Vol. 13
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-03-03
Shape Recognition of Shallow Buried Metallic Objects at X-Band Using ANN and Image Analysis Techniques
By
Progress In Electromagnetics Research B, Vol. 13, 257-273, 2009
Abstract
A robust algorithm has been developed for improving the backscattered signal and recognizing the shape of the shallow buried metallic object using Artificial Neural Network (ANN) and image analysis techniques for remote sensing at X-band. An ANN with image analysis technique based on tangent analysis is proposed to recognize the shape of metallic buried objects and minimize the orientation effect of buried object. The experimental setup has been assembled for detecting the buried metallic objects of any size at different depths in the sand pit. The system uses only one pyramidal horn antenna for transmitting and receiving microwave signals at X-band (10.0 GHz). All the data to be processed by this algorithm has been received by moving the transmitter/receiver to different locations at a single frequency in X-band in the far field region. ANN technique has been found to be very efficient. An effective training technique has been used to improve the effectiveness of the algorithm. The retrieved result of shape is in good agreement with original shape.
Citation
Dharmendra Singh, N. K. Choudhary, Kailash Chandra Tiwari, and Rajendra Prasad, "Shape Recognition of Shallow Buried Metallic Objects at X-Band Using ANN and Image Analysis Techniques," Progress In Electromagnetics Research B, Vol. 13, 257-273, 2009.
doi:10.2528/PIERB09010301
References

1. Ulbay, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Active and Passive), Vol. 3, First Ed., First Ed., Vol. 3, Ch. 14, Addision-Wesley, New York, 1981.

2. Al-Nuaimy, W., Y. Huang, M. Nakhkash, M. T. C. Fang, V. T. Nguyen, and A. Eriksen, "Automatic detection of buried utilites and solid objects with GPR using neural networks and pattern recognition," Journal of Applied Geophysics, Vol. 43, 157-165, 2000.
doi:10.1016/S0926-9851(99)00055-5

3. Carosi, S. and G. Cevini, "An electromagnetic approach based on neural networks for the GPR investigation of buried cylinders," IEEE Geoscience and Remotes Sensing Letters, Vol. 2, No. 1, 2005.

4. Brunzell, H., "Detection of shallowly buried objects using impulse radar," IEEE Trans. Geosci. and Remote Sensing, Vol. 32, No. 2, 875-886, March 1999.
doi:10.1109/36.752207

5., Yamaguchi, Y., Y. Maruyama, A. Kawakami, M. Sengoku, and T. Abe, "Detection of object buried in wet snowpack by FM-CW radar," IEEE Trans. Geosci. and Remote Sensing, Vol. 29, No. 2, 201-208, March 1991.
doi:10.1109/36.73660

6. Franceschetti, G. and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, 1999.

7. Yamaguchi, Y., M. Mitsumoto, M. Sengoku, and T. Abe, "Synthetic aperture FM-CW radar applied to the detection of objects buried in snowpack," IEEE Trans. Geosci. and Remote Sensing, Vol. 32, No. 1, 11-18, January 1994.
doi:10.1109/36.285184

8. Carine, L., R. Kapoor, and C. E. Baum, "Polarimetric SAR imaging of buried landmines," IEEE Trans. Geosci. and Remote Sensing, Vol. 36, No. 6, 1985-1988, November 1998.
doi:10.1109/36.729373

9. Christodoulou, C. and M. Georgiopoulos, Application of Neural Networks in Electromagnetics, Artech House, Boston, London, 2001.

10. Yoshida, T. and S. Omatu, "Neural network approach to land cover mapping," IEEE Trans. Geosci. and Remote Sensing, Vol. 32, No. 5, 1103-1109, September 1994.
doi:10.1109/36.312899

11. Tsintikidis, D., J. L. Haferman, E. N. Anagnostou, W. F. Karjewski, and T. F. Smith, "A Neural network approach to estimating rainfall from spaceborne microwave data," IEEE. Geosci. and Remote Sensing, Vol. 35, No. 5, 1079-1093, September 1997.
doi:10.1109/36.628775

12. Bischof, H. and A. Leonardis, "Finding optimal neural networks for land use classification," IEEE Trans. Geosci. and Remote Sensing, Vol. 36, No. 1, 337-341, January 1998.
doi:10.1109/36.655348

13. Morrow, I. L. and P. Gendern, "Effective imaging of buried dielectric object," IEEE Trans. Geosci. and Remote Sensing, Vol. 40, 943-949, 2002.
doi:10.1109/TGRS.2002.1006383

14. Sullivan, A., R. Damarla, N. Geng, Y. Dong, and L. Carin, "Ultrawide-band synthetic aperture radar for detection of unexploded ordinance: Modeling and measurement," IEEE Trans. Antennas Propagat., Vol. 48, 1306-1315, September 2000.
doi:10.1109/8.898763

15. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried nonmetallioc landmine at microwave X-bang frequency," Progress In Electromagnetic Research, PIER 79, 2008.

16. Currie, N. C., Editor, Radar Reflectivity Measurement: Techniques and Application, Artech House, Norwood, MA, 1989.

17. Ulbay, F. T., R. K. Moore, and A. K. Fung, Active and Passive Remote Sensing, Vol. 1, Artech House, Norwood, MA, 1982.

18. Simon, H., Neural Networks, Prentice Hall, New Jersey, 2001.

19. Zurada, J. M., Introduction to Artificial Neural Systems, 2nd edition, Ch. 4, 163-219, Jaico Publishing House, Mumbai, 1997.

20. Hassoun, M. M., Fundamentals of Artificial Neural Networks, Ch. 6, 284-295, Prentice-Hall of India, New Delhi, 1999.

21. Abdou, I. E. and W. K. Pratt, "Quantative design and evaluation of enhancement/thresholding edge detector," Proceedings of the IEEE, Vol. 67, No. 5, 753-763, 1996.
doi:10.1109/PROC.1979.11325