1. Sihvola, A., Electromagnetic Mixing Formulae and Applications, The Institution of Electric Engineers, 1999.
2. Herrick, D. C. and W. D. Kennedy, "Electrical efficiency: A pore geometric theory for interpretation of the electrical properties of reservoir rocks," Geophysics, Vol. 59, No. 6, 918-927, 1994.
doi:10.1137/0523084 Google Scholar
3. Allaire, G., "“Homogenization and two-scale convergence," SIAM J. Math. Anal., Vol. 23, No. 6, 1482-1518, 1992.
doi:10.1137/0523084 Google Scholar
4. Bakhvalov, N. and G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, 1989.
5. Beliaev, A. Y., Homogenization in the Problems of Groundwater Flows, Nauka, 2004.
6. Bensoussan, A., J.-L. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-holland, 1978.
7. Coiranescu, D. and P. Donato, An Introduction to Homogenization, Number 17 in Oxford Lecture Series in Mathematics and Its Applications, 1999.
8. Dal Maso, G., An Introduction to Gamma-Convergence, 1993.
9. De Giorgi, E., "Sulla convergenza di alcune successioni d'integrali del tipo dell'area," Rend. Mat., Vol. 8, No. 6, 277-294, 1975. Google Scholar
10. Murat, F., "Compacite par compensation, Partie I," Ann. Scuola Norm. Sup. Pisa, Cl. Sci. Fis. Mat., Vol. 5, 489-507, 1978. Google Scholar
11. Murat, F., "Compacite par compensation, Partie II," Proc. Intern. Meeting on Recent Methods in Nonlinear Analysis, De Giorgi (ed.), Magenes, Mosco, Pitagora, Bologna, 245-256, 1979.
doi:10.1137/0520043 Google Scholar
12. Nguetseng , G., "A general convergence result for a functional related to the theory of homogenization," SIAM J. Math. Anal., Vol. 20, No. 3, 608-623, 1989.
doi:10.1137/0520043 Google Scholar
13. Sanchez-Palencia, E., Non-homogeneous Media and Vibration Theory, Lecture notes in Phys. Springer, 1980.
14. Spagnolo, S., "Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore," Ann. Scuola Norm. Sup. Pisa, Cl. Sci. Fis. Mat., Vol. 21, No. 3, 657-699, 1967. Google Scholar
15. Tartar, L., "Problemes d'homogeneisation dans les equations aux derivees partielles," H-convergence, F. Murat (ed.), Cours Peccot College de France, Seminare d'Analyse Fonctionnelle et Numerique, 1977/78, Universite d'Alger,1978. Seminare d'Analyse Fonctionnelle et Numerique, 1977/78, Universite d'Alger,1978' target='_blank'> Google Scholar
16. Zhikov, V. V., Kozlov, S. M., and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994.
17. Bakhvalov, N. S., "Homogenized characteristics of bodies with periodic structures," Doklady Mathematics of USSR, Vol. 218, No. 5, 1046-1048, 1974. Google Scholar
18. Caillerie, D. and T. Levy, "Application de l'homogeneisation au compartement electromagnetic d'un melange isolant-conducteur," C. R. Acad. Sc. , Vol. 296, Ser. II, 1035-1038, 1983. Google Scholar
19. Engstrom, C. and D. Sjoberg, "On two numerical methods for homogenization of Maxwell's equations," Journal of Electromagnetic Waves and Applications , Vol. 21, No. 13, 1845-1856, 2007. Google Scholar
20. Kristensson, G., Homogenization of the Maxwell equations in an anisotropic material, Technical Report LUTEDX/(TEAT-7124)/1-12/(2001), Department of Electroscience, Lund Institute of Technology, Sweeden,2001.
21. Markowich, P. A. and F. Poupaud, "The Maxwell equation in a periodic medium: Homogenization of the energy density," Ann. Sc. Norm. Sup. Pisa Cl. Sci., Vol. 23, No. 4, 301-324, 1996. Google Scholar
22. Sjoberg, D., Homogenizatopn of dispersive material parameters for Maxwell's equations using a singular value decomposition, Technical Report LUTEDX/(TEAT-7124)/1-24/(2004), Department of Electroscience, Lund Institute of Technology, Sweeden, 2004.
23. Sjoberg, D., C. Engstrom, G. Kristensson, D. J. N. Wall, and N. Wellander, A floquet-bloch decomposition of Maxwell's equations, applied to homogenization, Technical ReportLUTEDX/(TEAT-7119)/1-27/(2003), Department of Electroscience,Lund Institute of Technology, Sweeden, 2003.
24. Wellander, N., "Homogenization of the Maxwell equations: Case I. Linear theory," Appl. Math., Vol. 46, No. 2, 29-51, 2001.
doi:10.1023/A:1013727504393 Google Scholar
25. Wellander, N., "Homogenization of the Maxwell equations: Case II. Nonlinear conductivity," Appl. Math., Vol. 47, No. 3, 255-283, 2002.
doi:10.1023/A:1021797505024 Google Scholar
26. Banks, H. T., V .A. Bokil, D. Ciroanescu, N. L. Gibson, G. Griso, and B. Miara, "Homogenization of periodically varying coefficients in electromagnetic materials," J. Sci. Comput., Vol. 28, No. 2-3, 191-221, 2006.
doi:10.1007/s10915-006-9091-y Google Scholar
27. Bosavit, A., G. Griso, and B. Miara, "Modelisation de structures electromanetiques periodiques: Materiaux bianisotropiques avec memoire," C.R. Acad. Sci. Paris, Ser. I, Vol. 338, 97-102, 2004. Google Scholar
28. Huang, K. and X. Yang, "A method for calculating the effective permittivity of a mixture solution during a chemical reaction by experimental results," Progress In Electromagnetics Research Letters, Vol. 5, 99-107, 2008.
doi:10.2528/PIERL08110403 Google Scholar
29. Artola, M., "Homogenization and electromagnetic wave propagation in composite media with high conductivity inclusions," Proceedings of the Second Workshop on Composite Media and Homogenization Theory, D. Maso and G. Dell'Anttotnio (eds.), Singapore, World Scientifis Publisher, 2005. Google Scholar
30. Kristensson, G., "Homogenization of corrugated interfaces in electromagnetics," Progress In Electromagnetics Reserach, Vol. 55, 1-31, 2005.
doi:10.2528/PIER05020302 Google Scholar
31. Ouchetto, O., S. Zouhdi, A. Bossavit, G. Griso, and B. Miara, "Modeling of 3D periodic multiphase composites by homogenization," Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, Part 2, 2615-2619, 2006. Google Scholar
32. Wellander, N. and G. Kristensson, "Homogenization of the Maxwell equations at fixed frequency," SIAM J. Appl. Math., Vol. 64, No. 1, 170-195, 2003.
doi:10.1137/S0036139902403366 Google Scholar
33. Garrouch, A. A. and M. M. Sharma, "The influence of clay contents, salinity, stress, and wettability on the dielectric properties of brine-saturated rocks: 10Hz to 10MHz," Geophysics, Vol. 59, No. 6, 909-917, 1994.
doi:10.1190/1.1443650 Google Scholar
34. El Feddi, M., Z. Ren, A. Razek, and A. Bossavit, "Homogenization technique for Maxwell equations in periodic structures," IEEE Transactions on Magnetics, Vol. 33, No. 2, 1382-1385, 1997.
doi:10.1109/20.582514 Google Scholar
35. Hashin, Z. and S. Shtrikman, "A variational approach to the theory of effective magnetic permeability of multiphase materials," J. Appl. Phys., Vol. 33, 3125-3131, 1962.
doi:10.1063/1.1728579 Google Scholar
36. Sihvola, A., "Effective permittivity of mixtures: Numerical validation by the FDTD method," IEEE Transactions on Geosciences and Remote Sensing, Vol. 38, No. 3, 1303-1308, 2000.
doi:10.1109/36.843023 Google Scholar
37. Vinogradov, A. P., Electrodynamics of Composite Materials, Editorial, URSS, 2001.
38. Roberts, J. N. and L. M. Schwartz, "Grain consolidation and electrical conductivity in porous media," Physical Review B, Vol. 31, No. 9, 5990-5997, 1985.
doi:10.1103/PhysRevB.31.5990 Google Scholar
39. Jackson, J. D., Classical Electrodynamics, 2nd Ed., John Wiley& Son, 1975.
40. Maxwell, J. C., Treatise on Electricity and Magnetism, Vol. 21, Clarendon Press, 1881.
41. Wagner, K. W., Aroh Elektrotech, No. 9, 371-392, 1914.
42. Brawn, Jr., W. F., Dielectrics, Handbuch der Physik, 1956.
43. Dykhne, A. M., "Conductivity of a two-dimensional twophase system," Journal of Experimental and Theoretical Physics, Vol. 59, No. 7, 110-115, 1970. Google Scholar
44. Talalov, A. D., D. S. Daev, and , "On a structure mechanism undelying dispersion of electrical properties of heterogeneous rocks," Izvesiya, Physics of the Solid Earth, Vol. 8, 56-66, 1996. Google Scholar
45. Zuzovsky, M. and H. Brenner, "Effective conductivities of composite materials composed of cubic arrangements of spherical particles embedded in an isotropic matrix," J. Appl Math. Phys., Vol. 28, 979-992, 1977. Google Scholar