Vol. 14
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-04-13
Frequency Dispersion of Dielectric Permittivity and Electric Conductivity of Rocks via Two-Scale Homogenization of the Maxwell Equations
By
Progress In Electromagnetics Research B, Vol. 14, 175-202, 2009
Abstract
We evaluate effective dielectric permittivity and electric conductivity for water-saturated rocks based on a realistic model of a representative cell of the pore space which has periodical structure. We have applied the method of two-scale homogenization of the Maxwell equations, which results in up-scaling coupled equations at the microscale to equations valid at the macroscale. We have analyzed the interfacial Maxwell-Wagner dispersion effect and the Archie law as well.
Citation
Vladimir V. Shelukhin, and Sergey A. Terentev, "Frequency Dispersion of Dielectric Permittivity and Electric Conductivity of Rocks via Two-Scale Homogenization of the Maxwell Equations," Progress In Electromagnetics Research B, Vol. 14, 175-202, 2009.
doi:10.2528/PIERB09021804
References

1. Sihvola, A., Electromagnetic Mixing Formulae and Applications, The Institution of Electric Engineers, 1999.

2. Herrick, D. C. and W. D. Kennedy, "Electrical efficiency: A pore geometric theory for interpretation of the electrical properties of reservoir rocks," Geophysics, Vol. 59, No. 6, 918-927, 1994.
doi:10.1137/0523084

3. Allaire, G., "“Homogenization and two-scale convergence," SIAM J. Math. Anal., Vol. 23, No. 6, 1482-1518, 1992.
doi:10.1137/0523084

4. Bakhvalov, N. and G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, 1989.

5. Beliaev, A. Y., Homogenization in the Problems of Groundwater Flows, Nauka, 2004.

6. Bensoussan, A., J.-L. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-holland, 1978.

7. Coiranescu, D. and P. Donato, An Introduction to Homogenization, Number 17 in Oxford Lecture Series in Mathematics and Its Applications, 1999.

8. Dal Maso, G., An Introduction to Gamma-Convergence, 1993.

9. De Giorgi, E., "Sulla convergenza di alcune successioni d'integrali del tipo dell'area," Rend. Mat., Vol. 8, No. 6, 277-294, 1975.

10. Murat, F., "Compacite par compensation, Partie I," Ann. Scuola Norm. Sup. Pisa, Cl. Sci. Fis. Mat., Vol. 5, 489-507, 1978.

11. Murat, F., "Compacite par compensation, Partie II," Proc. Intern. Meeting on Recent Methods in Nonlinear Analysis, De Giorgi (ed.), Magenes, Mosco, Pitagora, Bologna, 245-256, 1979.
doi:10.1137/0520043

12. Nguetseng , G., "A general convergence result for a functional related to the theory of homogenization," SIAM J. Math. Anal., Vol. 20, No. 3, 608-623, 1989.
doi:10.1137/0520043

13. Sanchez-Palencia, E., Non-homogeneous Media and Vibration Theory, Lecture notes in Phys. Springer, 1980.

14. Spagnolo, S., "Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore," Ann. Scuola Norm. Sup. Pisa, Cl. Sci. Fis. Mat., Vol. 21, No. 3, 657-699, 1967.

15. Tartar, L., "Problemes d'homogeneisation dans les equations aux derivees partielles," H-convergence, F. Murat (ed.), Cours Peccot College de France, Seminare d'Analyse Fonctionnelle et Numerique, 1977/78, Universite d'Alger,1978.

16. Zhikov, V. V., Kozlov, S. M., and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994.

17. Bakhvalov, N. S., "Homogenized characteristics of bodies with periodic structures," Doklady Mathematics of USSR, Vol. 218, No. 5, 1046-1048, 1974.

18. Caillerie, D. and T. Levy, "Application de l'homogeneisation au compartement electromagnetic d'un melange isolant-conducteur," C. R. Acad. Sc. , Vol. 296, Ser. II, 1035-1038, 1983.

19. Engstrom, C. and D. Sjoberg, "On two numerical methods for homogenization of Maxwell's equations," Journal of Electromagnetic Waves and Applications , Vol. 21, No. 13, 1845-1856, 2007.

20. Kristensson, G., Homogenization of the Maxwell equations in an anisotropic material, Technical Report LUTEDX/(TEAT-7124)/1-12/(2001), Department of Electroscience, Lund Institute of Technology, Sweeden,2001.

21. Markowich, P. A. and F. Poupaud, "The Maxwell equation in a periodic medium: Homogenization of the energy density," Ann. Sc. Norm. Sup. Pisa Cl. Sci., Vol. 23, No. 4, 301-324, 1996.

22. Sjoberg, D., Homogenizatopn of dispersive material parameters for Maxwell's equations using a singular value decomposition, Technical Report LUTEDX/(TEAT-7124)/1-24/(2004), Department of Electroscience, Lund Institute of Technology, Sweeden, 2004.

23. Sjoberg, D., C. Engstrom, G. Kristensson, D. J. N. Wall, and N. Wellander, A floquet-bloch decomposition of Maxwell's equations, applied to homogenization, Technical ReportLUTEDX/(TEAT-7119)/1-27/(2003), Department of Electroscience,Lund Institute of Technology, Sweeden, 2003.

24. Wellander, N., "Homogenization of the Maxwell equations: Case I. Linear theory," Appl. Math., Vol. 46, No. 2, 29-51, 2001.
doi:10.1023/A:1013727504393

25. Wellander, N., "Homogenization of the Maxwell equations: Case II. Nonlinear conductivity," Appl. Math., Vol. 47, No. 3, 255-283, 2002.
doi:10.1023/A:1021797505024

26. Banks, H. T., V .A. Bokil, D. Ciroanescu, N. L. Gibson, G. Griso, and B. Miara, "Homogenization of periodically varying coefficients in electromagnetic materials," J. Sci. Comput., Vol. 28, No. 2-3, 191-221, 2006.
doi:10.1007/s10915-006-9091-y

27. Bosavit, A., G. Griso, and B. Miara, "Modelisation de structures electromanetiques periodiques: Materiaux bianisotropiques avec memoire," C.R. Acad. Sci. Paris, Ser. I, Vol. 338, 97-102, 2004.

28. Huang, K. and X. Yang, "A method for calculating the effective permittivity of a mixture solution during a chemical reaction by experimental results," Progress In Electromagnetics Research Letters, Vol. 5, 99-107, 2008.
doi:10.2528/PIERL08110403

29. Artola, M., "Homogenization and electromagnetic wave propagation in composite media with high conductivity inclusions," Proceedings of the Second Workshop on Composite Media and Homogenization Theory, D. Maso and G. Dell'Anttotnio (eds.), Singapore, World Scientifis Publisher, 2005.

30. Kristensson, G., "Homogenization of corrugated interfaces in electromagnetics," Progress In Electromagnetics Reserach, Vol. 55, 1-31, 2005.
doi:10.2528/PIER05020302

31. Ouchetto, O., S. Zouhdi, A. Bossavit, G. Griso, and B. Miara, "Modeling of 3D periodic multiphase composites by homogenization," Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, Part 2, 2615-2619, 2006.

32. Wellander, N. and G. Kristensson, "Homogenization of the Maxwell equations at fixed frequency," SIAM J. Appl. Math., Vol. 64, No. 1, 170-195, 2003.
doi:10.1137/S0036139902403366

33. Garrouch, A. A. and M. M. Sharma, "The influence of clay contents, salinity, stress, and wettability on the dielectric properties of brine-saturated rocks: 10Hz to 10MHz," Geophysics, Vol. 59, No. 6, 909-917, 1994.
doi:10.1190/1.1443650

34. El Feddi, M., Z. Ren, A. Razek, and A. Bossavit, "Homogenization technique for Maxwell equations in periodic structures," IEEE Transactions on Magnetics, Vol. 33, No. 2, 1382-1385, 1997.
doi:10.1109/20.582514

35. Hashin, Z. and S. Shtrikman, "A variational approach to the theory of effective magnetic permeability of multiphase materials," J. Appl. Phys., Vol. 33, 3125-3131, 1962.
doi:10.1063/1.1728579

36. Sihvola, A., "Effective permittivity of mixtures: Numerical validation by the FDTD method," IEEE Transactions on Geosciences and Remote Sensing, Vol. 38, No. 3, 1303-1308, 2000.
doi:10.1109/36.843023

37. Vinogradov, A. P., Electrodynamics of Composite Materials, Editorial, URSS, 2001.

38. Roberts, J. N. and L. M. Schwartz, "Grain consolidation and electrical conductivity in porous media," Physical Review B, Vol. 31, No. 9, 5990-5997, 1985.
doi:10.1103/PhysRevB.31.5990

39. Jackson, J. D., Classical Electrodynamics, 2nd Ed., John Wiley& Son, 1975.

40. Maxwell, J. C., Treatise on Electricity and Magnetism, Vol. 21, Clarendon Press, 1881.

41. Wagner, K. W., Aroh Elektrotech, No. 9, 371-392, 1914.

42. Brawn, Jr., W. F., Dielectrics, Handbuch der Physik, 1956.

43. Dykhne, A. M., "Conductivity of a two-dimensional twophase system," Journal of Experimental and Theoretical Physics, Vol. 59, No. 7, 110-115, 1970.

44. Talalov, A. D., D. S. Daev, and , "On a structure mechanism undelying dispersion of electrical properties of heterogeneous rocks," Izvesiya, Physics of the Solid Earth, Vol. 8, 56-66, 1996.

45. Zuzovsky, M. and H. Brenner, "Effective conductivities of composite materials composed of cubic arrangements of spherical particles embedded in an isotropic matrix," J. Appl Math. Phys., Vol. 28, 979-992, 1977.