Vol. 15
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-06-19
Indoor Location Based on IEEE 802.11 Round-Trip Time Measurements with Two-Step NLOS Mitigation
By
Progress In Electromagnetics Research B, Vol. 15, 285-306, 2009
Abstract
This paper presents a comprehensive location scheme in a rich multipath environment. It is based on the estimation of the distance between two wireless nodes in line-of-sight (LOS) from the best statistical estimator of the round-trip time (RTT), assuming a linear regression as the model that best relates this statistical estimator to the actual distance. As LOS cannot be guaranteed in an indoor environment, the effect of non-line-of-sight (NLOS) is mitigated by a two-step correction scheme. At a first step, the severe NLOS error is corrected from distance estimates applying the prior NLOS measurement correction (PNMC) method. At a second step, a new multilateration technique is implemented together with received signal strength (RSS) information to minimize the difference between the estimated position and the actual one. The location scheme coupled with measurements in a real indoor environment demonstrates that it outperforms the conventional time-based indoor location schemes using neither a tracking technique nor a previous calibration stage of the environment and no need for time synchronization between wireless nodes.
Citation
Alfonso Bahillo Martinez, Santiago Mazuelas Franco, Javier Prieto Tejedor, Ruben Mateo Lorenzo Toledo, Patricia Fernandez Reguero, and Evaristo Jose Abril, "Indoor Location Based on IEEE 802.11 Round-Trip Time Measurements with Two-Step NLOS Mitigation," Progress In Electromagnetics Research B, Vol. 15, 285-306, 2009.
doi:10.2528/PIERB09050409
References

1. Pahlavan, K., X. Li, and J.-P. Mäkelä, "Indoor geolocation science and technology," IEEE Communication Magazine, Vol. 40, 112-118, 2002.
doi:10.1109/35.983917

2. Lachapelle, G., "GNSS indoor location technologies," Journal of Global Positioning Systems, Vol. 3, No. 1-2, 2-11, 2004.

3. Golden, S. A. and S. S. Bateman, "Sensor measurements for Wi-Fi location with emphasis on time-of-arrival ranging," IEEE Trans. on Mobile Computing, Vol. 6, No. 10, 1185-1198, Oct. 2007.
doi:10.1109/TMC.2007.1002

4. Mak, L. C. and T. Furukawa, "A Time-of-arrival-based positioning technique with Non-line-of-sight mitigation using low-frequency sound," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5, 507-526, 2008.

5. Liew, S. C., K. G. Tan, and C. P. Tan, "Non-Taylor series based positioning method for hybrid GPS/Cellphone system," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 717-729, 2006.
doi:10.1163/156939306776143451

6. Liew, S. C., K. G. Tan, and T. S. Lim, "Investigation of direct A-GPS positioning for hybrid E-OTD/GNSS," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 79-87, 2006.
doi:10.1163/156939306775777332

7. Soliman, M. S., T. Morimoto, and Z. I. Kawasaki, "Three-dimensional localization system for impulsive noise sources using ultra-wideband digital interferometer technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 515-530, 2006.
doi:10.1163/156939306776117027

8. Mazuelas, S., F. A. Lago, D. Gonzalez, A. Bahillo, J. Blas, P. Fernandez, R. M. Lorenzo, and E. J. Abril, "Dynamic estimation of optimum path loss model in a RSS positioning system," Proceedings of Position, Location and Navigation Symposium, 679-684, Monterrey, California, USA, Mar. 2008.

9. Wang, X., P. R. P. Hoole, and E. Gunawan, "An electromagnetic-time delay method for determining the positions and velocities of mobile stations in a GSM network ," Progress In Electromagnetics Research, Vol. 23, 165-186, 1999.
doi:10.2528/PIER98102603

10. Hatami, A. and K. Pahlavan, "Hybrid TOA-RSS based localization using neural networks," Proceedings of IEEE Global Telecommunications Conference, Nov. 2006.

11. Tayebi, A., J. Gomez, F. S. De, Adana, and O. Gutierrez, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments ," Progress In Electromagnetics Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER09020301

12. Bahillo, A., J. Prieto, S. Mazuelas, R. M. Lorenzo, J. Blas, and P. Fernández, "IEEE 802.11 distance estimation based on RTS/CTS two-frame exchange mechanism," Proceedings of Trans. on Vehicular Technology Conference, Barcelona, Spain, Apr. 2009.

13. Jiang, L. and S. Y. Tan, "A simple analytical path loss model for urban cellular communication systems," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1017-1032, 2004.
doi:10.1163/1569393042955405

14. Blas Prieto, J., P. Fernández Reguero, R. M. Lorenzo Toledo, E. J. Abril, S. Mazuelas Franco, A. Bahillo Martinez, and D. Bullid, "A model for transition between outdoor and indoor propagation," Progress In Electromagnetics Research, Vol. 85, 147-167, 2008.
doi:10.2528/PIER08072101

15. Mazuelas, S., F. A. Lago, J. Blas, A. Bahillo, P. Fernández, R. M. Lorenzo, and E. J. Abril, "Prior NLOS measurement correction positioning cellular wireless networks," IEEE Trans. on Vehicular Technology, Vol. 58, 2585-2591, Jun. 2009.
doi:10.1109/TVT.2008.2009305

16. Seow, C. K. and S. Y. Tan, "Localization of omni-directional mobile device in multipath environments," Progress In Electromagnetics Research, Vol. 85, 323-348, 2008.
doi:10.2528/PIER08090302

17. Tang, H., Y. Park, and T. Qui, "NLOS mitigation for TOA location based on a modified deterministic model," Research Letters in Signal Processing, Vol. 8, No. 1, 1-4, Apr. 2008.
doi:10.1155/2008/970461

18. Wylie, M. P. and J. Holtzman, "The non-line of sight problem in mobile location estimation," Proceedings of the 5th IEEE International Conference on Universal Personal Communications, Vol. 2, 827-831, Cambridge, Mass, USA, Oct. 1996.

19. Chen, V. C. and H. Ling, Time-frequency Transforms for Radar Imaging and Signal Analysis, Artech House, Norwood, MA, USA, 2002.

20. Bullen, P. S., Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.

21. Pahlavan, K. and A. H. Levesque, Wireless Information Networks, John Wiley & Sons, Inc., New York, 1995.

22. IEEE Standard for Information Technology --- Telecommunications and Information Exchange Between Systems --- Local and Metropolitan Area Networks --- Specific Requirements --- Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifcations: Amendment 8: Medium Access Control (MAC) Quality of Service (QoS) Enhancements, IEEE Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003) IEEE Std802.11e-2005, Nov. 2005.

23. Ciurana, M., F. B.-Arroyo, and F. Izquierdo, "A ranging system with IEEE 802.11 data frames," Proceedings of IEEE Radio Wireless Symposium Conference, 133-136, Jan. 2007.
doi:10.1109/RWS.2007.351785

24. Allen, B., M. Dohler, E. Okon, W. Malik, A. Brown, and D. Edwards, Ultra Wideband Antennas and Propagation for Communications, Radar, and Imaging , John Wiley & Sons, West Sussex, UK, 2007.

25. Güvenç, I., C.-C. Chong, F. Watanabe, and H. Inamura, "NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics," EURASIP Journal on Advances in Signal Processing, Vol. 2008, DOI: 10.1155/2008/271984, 2008.
doi:10.1155/2008/271984

26. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environment," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801

27. Li, C. and W. Zhuang, "Nonline-of-sight error mitigation in mobile location," IEEE Trans. on Wireless Communication, Vol. 4, 560-572, Mar. 2005.

28. Urrela, A., J. Sala, and J. Riba, "Average performance analysis of circular and hyperbolic geolocation," IEEE Trans. on Vehicular Technology, Vol. 55, 52-66, Jan. 2006.
doi:10.1109/TVT.2005.861172

29. Chen, P.-C., "A non-line-of-sight error mitigation algorithm in location estimation," Proceedings of Wireless Communications and Networking Conference, Vol. 1, 316-320, New Orleans, LA, USA, Sep. 1999.