Vol. 10
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-07-14
Multi-Slotted Microstrip Patch Antenna for Wireless Communication
By
Progress In Electromagnetics Research Letters, Vol. 10, 11-18, 2009
Abstract
A new design technique of microstrip patch antenna is presented in this paper. The proposed antenna design consists of inverted patch structure with air-filled dielectric, direct coaxial probe feed technique and the novel slotted shaped patch. The composite effect of integrating these techniques and by introducing the new multi-slotted patch, offer a low profile, high gain, broadband, and compact antenna element. A wide impedance bandwidth of 27.62% at -10 dB return loss is achieved. The maximum achievable gain is 9.41 dBi. The achievable experimental 3-dB beamwidth (HPBW) in the azimuth and elevation are 60.880 and 390 respectively at centre frequency.
Citation
Mohammad Tariqul Islam, Mohammed Nazmus Shakib, and Norbahiah Misran, "Multi-Slotted Microstrip Patch Antenna for Wireless Communication," Progress In Electromagnetics Research Letters, Vol. 10, 11-18, 2009.
doi:10.2528/PIERL09060704
References

1. Yang, S. L. S., A. A. Kishk, and K. F. Lee, "Frequency reconFIgurable U-slot microstrip patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 127-129, 2008.
doi:10.1109/LAWP.2008.921330

2. Zhang, Y. P. and J. J. Wang, "Theory and analysis of differentially-driven microstrip antennas," IEEE Trans. Antennas Propag., Vol. 54, 1092-1099, 2006.
doi:10.1109/TAP.2006.872597

3. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, 1995.

4. Matin, M. M., B. S. Sharif, and C. C. Tsimenidis, "Probe fed stacked patch antenna for wideband applications," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2385-2388, 2007.
doi:10.1109/TAP.2007.901924

5. Wi, S. H., Y. B. Sun, I. S. Song, S. H. Choa, I. S. Koh, Y. S. Lee, and J. G. Yook, "Package-Level integrated antennas based on LTCC technology," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2190-2197, 2006.
doi:10.1109/TAP.2006.879191

6. Wi, S. H., J. M. Kim, T. H. Yoo, H. J. Lee, J. Y. Park, J. G. Yook, and H. K. Park, "Bow-tie-shaped meander slot antenna for 5 GHz application," Proc. IEEE Int. Symp. Antenna Propag., Vol. 2, 456-459, 2002.

7. Yang, F., X. Zhang, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1094-1100, 2001.
doi:10.1109/8.933489

8. Luk, K. M., C. L. Mak, Y. L. Chow, and K. F. Lee, "Broadband microstrip patch antenna," Electron. Lett., Vol. 34, No. 15, 1442-1443, 1998.
doi:10.1049/el:19981009

9. Chair, R., C. L. Mak, K. F. Lee, K. M. Luk, and A. A. Kishk, "Miniature wide-band half U-slot and half E-shaped patch antennas," IEEE Trans. Antennas Propag., Vol. 53, 2645-2652, 2005.
doi:10.1109/TAP.2005.851852

10. Bao, X. L. and M. J. Ammann, "Small pacth/slot antenna with 53% input impedance bandwidth," Electron. Lett., Vol. 43, No. 3, 146-147, 2007.
doi:10.1049/el:20073279

11. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5--6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

12. Khodaei, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
doi:10.2528/PIERB07112201

13. Islam, M. T., N. Misran, and K. G. Ng, "A 4 × 1 L-probe fed inverted hybrid E-H microstrip patch antenna array for 3G application," American Journal of Applied Sciences, Vol. 4, No. 11, 897-901, 2007.

14. Misran, N., M. N. Shakib, M. T. Islam, and B. Yatim, "Design analysis of a slotted microstrip antenna for wireless communication," Proc. of World Academy of Science, Engineering and Technology, Vol. 37, 448-450, 2009.