Vol. 10
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-08-10
2-Dal Simulation of EM Fields Radiated by Rotating Cylinder Carrying Surface Currents Using Passing Center Swing Back Grids Technique
By
Progress In Electromagnetics Research Letters, Vol. 10, 115-124, 2009
Abstract
The passing center swing back grids (PCSBG) technique, in conjunction with the method of characteristics (MOC), was proposed to model electromagnetic problems featured with rotating objects. The drive of this proposal lays mainly on the fact that MOC defines all field components in the center of grid cell. Its practicability was validated by exhibiting the radiated EM fields from a rotating cylinder which carries surface currents with Gaussian profile and flowing in the axial direction. To clearly demonstrate that the cylinder is rotating and radiating EM fields simultaneously, the following arrangements were made. The cylinder may be equally sliced into an even number of segments that are with and without currents alternatively since a rotating circular cylinder yields no relativistic effects. The computational results showed that the radiated electromagnetic fields bear vortex structures as the cause of rotating cylinder, which serves as the evidences that PCSBG works properly.
Citation
Mingtsu Ho, "2-Dal Simulation of EM Fields Radiated by Rotating Cylinder Carrying Surface Currents Using Passing Center Swing Back Grids Technique," Progress In Electromagnetics Research Letters, Vol. 10, 115-124, 2009.
doi:10.2528/PIERL09070508
References

1. Lee, J.-H. and J. Laskar, "Comparative study of feeding techniques for three-dimensional cavity resonators at 60 GHz," IEEE Transactions on Advanced Packing, Vol. 30, No. 1, Feb. 2007.

2. Ruiz-Cruz, J. A., J. R. Montejo-Garai, J. M. Rebollar, and S. Sobrino, "Compact full Ku-band triplexer with improved E-plane power divider," Progress In Electromagnetics Research, Vol. 86, 39-51, 2008.
doi:10.2528/PIER08082803

3. Wang, R., L.-S. Wu, and X.-L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

4. Ismail, A. and M. S. Razalli, "X-band and trisection substrate in-tegrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 85, 133-145, 2008.
doi:10.2528/PIER08081802

5. Han, S., X.-L.Wang, Y. Fan, Z. Yang, and Z. He, "The generalized chebyshev substrate integrated waveguide diplexer," Progress In Electromagnetics Research, Vol. 73, 29-38, 2007.
doi:10.2528/PIER07032002

6. Potelon, B., J. C. Bohorquez, J. F. Favennec, C. Quendo, E. Rius, and C. Person, "Design of Ku-band filter based on substrate-integrated circular cavities (SICCs)," IEEE MTT-S International Microwave Symposium Digest, 1237-1240, Jun. 2006.
doi:10.1109/MWSYM.2006.249434

7. Tang, H. J., W, Hong, J.-X. Chen, G. Q. Luo, and K. Wu, "Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 4, 776-782, Apr. 2007.
doi:10.1109/TMTT.2007.893655

8. Ma, W., K. Wu, W. Hong, and Y.-J. Cheng, "Investigations on half-mode substrate integrated waveguide for high-speed interconnect application," IEEE MTT-S International Microwave Symposium Digest, 120-123, Dec. 2008.

9. Liu, B., W. Hong, Y.-Q. Wang, Q.-H. Lai, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) 3-dB coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 1, 22-24, Jan. 2007.
doi:10.1109/LMWC.2006.887244

10. Pozar, D. M., "Microwave Engineering," Wiley, 1998.

11. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, 1992..