Vol. 16
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-12
An Inductive Self-Complementary Hilbert-Curve Antenn for UHF RFID Broadband and Circular Polarization Tags
By
Progress In Electromagnetics Research B, Vol. 16, 433-443, 2009
Abstract
A novel fractal tag antenna constructed with Hilbert-curve and self-complementary configuration is proposed for UHF RFID applications. The main aim of this paper is to merge the meander line and meandered-slot structure of the RFID tag antenna in order to obtain a good performance of compact, broadband, circular polarization and conjugate impedance matching. The tunable inductive and broadband (-10 dB BW = 115 MHz) characteristics of frequency responses and directivity (1.62 dBi) as well as circular polarization (-3dB AR BW = 315 MHz) of radiation patterns for 900 MHz are studied and presented.
Citation
Ji-Chyun Liu, Bing-Hao Zeng, Ivy Chen, Chung-Chi Chang, and Dau-Chyrh Chang, "An Inductive Self-Complementary Hilbert-Curve Antenn for UHF RFID Broadband and Circular Polarization Tags," Progress In Electromagnetics Research B, Vol. 16, 433-443, 2009.
doi:10.2528/PIERB09072103
References

1. Lee, H. F. and W. Chen, Advances in Microstrip and Printed Antennas, 1997.

2. Marrocco, G., "Gain-optimized self-resonant meander line antennas for RFID applications," IEEE Antennas Wireless Propag. Lett., Vol. 2, 302-305, 2003.
doi:10.1109/LAWP.2003.822198        Google Scholar

3. Keskilammi, M. and M. Kivikoski, "Using text as a meander line for RFID transponder antennas," IEEE Antennas Wireless Propag. Lett., Vol. 3, 372-374, 2004.
doi:10.1109/LAWP.2004.841212        Google Scholar

4. Ukkonen, L., L. Sydanheimo, and M. Kivikoski, "Effects of metallic plate size on the performance of microstrip patch-type tag antennas for passive RFID," IEEE Antennas Wireless Propag. Lett., Vol. 4, 410-413, 2005.
doi:10.1109/LAWP.2005.860212        Google Scholar

5. Son, H. W. and C. S. Pyo, "Design of RFID tag antennas using an inductively coupled feed," Electron. Lett., Vol. 41, No. 18, 994-996, Sep. 2005.
doi:10.1049/el:20051536        Google Scholar

6. Rao, K. V. S., P. V. Nikitin, and S. F. Lam, "Antenna design for UHF RFID tags: A review and a practical application," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 12, 3870-3876, Dec. 2005.
doi:10.1109/TAP.2005.859919        Google Scholar

7. Ukkonen, L., M. Scha®rath, D. W. Engels, L. Sydanheimo, and M. Kivikoski, "Operability of folded microstrip patch-type tag antenna in the UHF RFID bands within 865-928 MHz," IEEE Antennas Wireless Propag. Lett., Vol. 5, 414-417, 2006.
doi:10.1109/LAWP.2006.883085        Google Scholar

8. Chang, C. C. and Y. C. Lo, "Broadband RFID tag antenna with capacitively coupled structure," Electron. Lett., Vol. 42, No. 23, 1322-1323, Nov. 2006.
doi:10.1049/el:20062063        Google Scholar

9. Son, H. W., G. Y. Choi, and C. S. Pyo, "Design of wideband RFID tag antenna for metallic surfaces," Electron. Lett., Vol. 42, No. 5, 263-265, Mar. 2006.
doi:10.1049/el:20064323        Google Scholar

10. Ahn, J., H. Jang, H. Moon, J. W. Lee, and B. Lee, "Inductively coupled compact RFID tag antenna at 910MHz with near-isotopic radar cross-section (RCS) patterns," IEEE Antennas Wireless Propag. Lett., Vol. 6, 518-520, 2007.
doi:10.1109/LAWP.2007.909962        Google Scholar

11. Hu, S., C. L. Law, and W. Dou, "Petaloid antenna for passive UWB-RFID tags," Electron. Lett., Vol. 43, No. 22, 1174-1176, Oct. 2007.
doi:10.1049/el:20072183        Google Scholar

12. Vemagiri, J., M. Balachandran, M. Agarwal, and K. Varahramyan, "Development of compact half-sierpinski fractal antenna for RFID applications," Electron. Lett., Vol. 43, No. 22, 1168-1169, Oct. 2007.
doi:10.1049/el:20072127        Google Scholar

13. Kim, K. H., J. G. Song, D. H. Kim, H. S. Hu, and J. H. Park, "Fork-shaped RFID tag antenna mountable on metallic surfaces," Electron. Lett., Vol. 43, No. 23, 1400-1402, Dec. 2007.
doi:10.1049/el:20072891        Google Scholar

14. Olsson, T., M. Hjelm, J. Siden, and H. E. Nilsson, "Comparative robustness study of planar antenna," IET Microw. Antennas Propagat., Vol. 1, No. 3, 674-680, Jun. 2007.
doi:10.1049/iet-map:20060155        Google Scholar

15. Marrocco, G., "RFID antennas for the UHF remote monitoring of human subjects," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 6, 1862-1870, Jun. 2007.
doi:10.1109/TAP.2007.898626        Google Scholar

16. Calabrese, C. and G. Marrocco, "Meandered-slot antennas for sensor-RFID tags," IEEE Antennas Wireless Propag. Lett., Vol. 7, 5-8, 2008.
doi:10.1109/LAWP.2007.914123        Google Scholar

17. Kim, J.-S., W.-K. Choi, and G.-Y. Choi, "Small proximity coupled ceramic patch antenna for UHF RFID tag mountable on metallic objects," Progress In Electromagnetics Research C, Vol. 4, 129-138, 2008.        Google Scholar

18. Loo, C. H., K. Elmahgoub, F. Yang, A. Elsherbeni, D. Kajfez, A. Kishk, T. Elsherbeni, L. Ukkonen, L. Sydanheimo, M. Kivikoski, S. Merilampi, and P. Ruuskanen, "Chip impedance matching for UHF tag antenna design," Progress In Electromagnetics Research, Vol. 81, 359-370, 2008.
doi:10.2528/PIER08011804        Google Scholar

19. Monti, G., L. Catarinucci, and L. Tarricone, "Compact microstrip antenna for RFID applications," Progress In Electromagnetics Research Letters, Vol. 8, 191-199, 2009.
doi:10.2528/PIERL09042803        Google Scholar

20. Mushiake, Y., "Self-complementary antennas," IEEE Antennas Propagat. Mag., Vol. 34, No. 6, 23-29, Dec. 1992.
doi:10.1109/74.180638        Google Scholar

21. Mushiake, Y., "A report on Japanese developments of antennas from Yagi-Uda antenna to self-complementary antennas," IEEE Antennas Propagat. Mag., Vol. 46, No. 4, 47-60, Aug. 2004.
doi:10.1109/MAP.2004.1373999        Google Scholar

22. Xu, P., K. Fujimoto, and S. Lin, "Performance of quasi-self-complementary antenna using a monopole and a slot," Proc. IEEE Int. Symp. Antennas and Propagation, Vol. 2, 464-477, 2002.        Google Scholar

23. Xu, P. and K. Fujimoto, "L-shape self-complementary antenna," Proc. IEEE Int. Symp. Antennas and Propagation, Vol. 3, 95-98, 2003.        Google Scholar

24. Mosallaei, H. and K. Sarabandi, "A compact ultra-wideband self-complementary antennas with optimal topology and substrate," Proc. IEEE Int. Symp. Antennas and Propagation, Vol. 2, 1859-1862, 2004.        Google Scholar

25. Saitou, A., T. Iwaki, K. Honjo, K. Sato, T. Koyama, and K. Watnabe, "Practical realization of self-complementary broadband antenna on low-loss resin substrate for UWB applications," Proc. IEEE MTT-S, 1265-1268, 2004.        Google Scholar

26. Wong, K. L., T. Y. Wu, S. W. Su, and J. W. Lai, "Broadband printed quasi-self-complementary antenna for 5.2/5.8 GHz operation," Microwave Opt. Tech. Lett., Vol. 39, No. 6, 495-496, Dec. 2003.
doi:10.1002/mop.11258        Google Scholar

27. Chen, W. S., C. T. Chang, and K. Y. Ku, "Printed triangular quasi-self-complementary antennas for broadband operation," Proc. 2007 Int. Symp. Antennas and Propagation, 262-265, 2007.        Google Scholar

28. Sagan, H., Space-filling Curves, Springer-Verlag, 1994.

29. Anguera, J., C. Puente, and J. Soler, "Miniature monopole antenna based on the fractal Hilbert curve," Proc. IEEE Int. Symp. Antennas and Propagation, Vol. 4, 546-549, 2002.        Google Scholar

30. Best, S. R. and J. D. Morrow, "The effectiveness of space-filling fractal geometry in lowering resonant frequency," IEEE Antennas Wireless Propag. Lett., Vol. 1, 112-115, 2002.
doi:10.1109/LAWP.2002.806050        Google Scholar

31. Yang, X. S., B. Z. Wang, and Y. Zhang, "Two-port reconfigurable Hilbert curve patch antenna," Microwave Opt. Tech. Lett., Vol. 48, No. 1, 91-93, Jan. 2006.
doi:10.1002/mop.21271        Google Scholar

32. HFSS version 10.0, , Ansoft Software Inc., 2006.
doi:10.1002/mop.21271