Vol. 18
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-10-03
Transparent Shells --- Invisible to Electromagnetic Waves
By
Progress In Electromagnetics Research B, Vol. 18, 149-163, 2009
Abstract
In this paper, we study metamaterial-based transparent shells, which are invisible to electromagnetic waves and fields. More general topics, including material loss, material discretization and far field distribution etc. are covered in order to facilitate possible realization. We design and analyze the transparent shells using optical transformation. Unlike the widely-studied cloaking devices which make the objects inside invisible, the transparent shells physically cover and shield the devices inside without sacrifice of their electrical performance since they are transparent to incoming electromagnetic waves. Due to the simple constitutive parameters, these transparent structures could be realized using artificial metamaterials in a wide frequency band, which may have wide applications in civil and military areas.
Citation
Zhong-Lei Mei, and Tie-Jun Cui, "Transparent Shells --- Invisible to Electromagnetic Waves," Progress In Electromagnetics Research B, Vol. 18, 149-163, 2009.
doi:10.2528/PIERB09082805
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907        Google Scholar

2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628        Google Scholar

3. Kwon, D. and D. H. Werner, "Restoration of antenna parameters in scattering environments using electromagnetic cloaking," Appl. Phys. Lett., Vol. 92, 113507, 2008.
doi:10.1063/1.2898220        Google Scholar

4. Ma, H., S. Qu, Z. Xu, and J.Wang, "The open cloak," Appl. Phys. Lett., Vol. 94, 103501, 2009.
doi:10.1063/1.3095436        Google Scholar

5. Kwon, D., D. H. Werner, and , "Two-dimensional eccentric elliptic electromagnetic cloaks," Appl. Phys. Lett., Vol. 92, 013505, 2008.
doi:10.1063/1.2830698        Google Scholar

6. Mei, Z. L. and T. J. Cui, "Design of transparent cloaks with optical transformation," Proceedings of the 2008 International Workshop on Metamaterials, 137-139, 2008.        Google Scholar

7. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-Euclidean cloaking," Science, Vol. 323, 110-112, 2009.
doi:10.1126/science.1166332        Google Scholar

8. Cai, W., U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett., Vol. 91, 111105, 2007.
doi:10.1063/1.2783266        Google Scholar

9. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics Nanostruct. Fund. Appl., Vol. 6, 87-95, 2007.
doi:10.1016/j.photonics.2007.07.013        Google Scholar

10. Chen, H., B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903        Google Scholar

11. Cummer, S. A., B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621        Google Scholar

12. Huang, Y., Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express, Vol. 15, No. 18, 11133-11141, 2007.
doi:10.1364/OE.15.011133        Google Scholar

13. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901        Google Scholar

14. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.
doi:10.1126/science.1166949        Google Scholar

15. Lai, Y., J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, "Illusion optics: The optical transformation of an object into another object," Phys. Rev. Lett., Vol. 102, 25390, 2009.        Google Scholar

16. Lai, Y., H. Chen, Z. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, 093901, 2009.
doi:10.1103/PhysRevLett.102.093901        Google Scholar

17. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon., Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28        Google Scholar

18. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express, Vol. 16, No. 8, 5444-5452, 2008.
doi:10.1364/OE.16.005444        Google Scholar

19. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials, Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461        Google Scholar

20. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photon., Vol. 3, 461-463, 2009.
doi:10.1038/nphoton.2009.117        Google Scholar

21. Smolyaninov, I. I., V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, "Anisotropic metamaterials emulated by taperedwaveguides: Application to optical cloaking," Phys. Rev. Lett., Vol. 102, 213901, 2009.
doi:10.1103/PhysRevLett.102.213901        Google Scholar

22. Zharova, N. A., I. V. Shadrivov, and Y. S. Kivshar, "Inside-out electromagnetic cloaking," Opt. Express, Vol. 16, No. 7, 4615-4620, 2008.
doi:10.1364/OE.16.004615        Google Scholar

23. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
doi:10.1063/1.2748302        Google Scholar

24. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and experimental realization of a broadband transformation media ¯eld rotator at microwave frequencies," Phys. Rev. Lett., Vol. 102, 183903, 2009.
doi:10.1103/PhysRevLett.102.183903        Google Scholar

25. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 035122, 2008.
doi:10.1103/PhysRevB.77.035122        Google Scholar

26. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett., Vol. 92, 264101, 2008.
doi:10.1063/1.2951485        Google Scholar

27. Kong, F., B. I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Appl. Phys. Lett., Vol. 91, 253509, 2007.
doi:10.1063/1.2826283        Google Scholar

28. Jiang, W. X., T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E, Vol. 78, 066607, 2008.        Google Scholar

29. Schurig, D., J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express, Vol. 15, No. 22, 14772-14782, 2007.
doi:10.1364/OE.15.014772        Google Scholar

30. Rahm, M., D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express, Vol. 16, No. 15, 11555-11567, 2008.
doi:10.1364/OE.16.011555        Google Scholar

31. Roberts, D. A., M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Appl. Phys. Lett., Vol. 93, 251111, 2008.
doi:10.1063/1.3055604        Google Scholar

32. Kwon, D. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys., Vol. 10, 115023, 2008.
doi:10.1088/1367-2630/10/11/115023        Google Scholar

33. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903        Google Scholar

34. Tyc, T. and U. Leonhardt, "Transmutation of singularities in optical instruments," New J. Phys., Vol. 10, 115038, 2008.
doi:10.1088/1367-2630/10/11/115038        Google Scholar

35. Ma, Y. G., C. K. Ong, T. Tyc, and U. Leonhardt, "An omnidirectional retroreflector based on the transmutation of dielectric singularities," Nat. Materials, Vol. 8, 639-642, 2009.
doi:10.1038/nmat2489        Google Scholar

36. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
doi:10.1103/PhysRevE.72.016623        Google Scholar

37. Alu, A. and N. Engheta, "Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights," Opt. Express, Vol. 15, 3318-3332, 2007.
doi:10.1364/OE.15.003318        Google Scholar

38. Alu, A. and N. Engheta, "Multifrequency optical invisibility cloak with layered plasmonic shells," Phys. Rev. Lett., Vol. 100, 113901, 2008.
doi:10.1103/PhysRevLett.100.113901        Google Scholar

39. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, 2009.
doi:10.1103/PhysRevLett.102.233901        Google Scholar

40. Milton, G. W. and N. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A, Vol. 462, 3027-3059, 2006.
doi:10.1098/rspa.2006.1715        Google Scholar

41. Vasquez, F. G., G. W. Milton, and D. Onofrei, "Broadband exterior cloaking," Opt. Express, Vol. 17, 14800-14805, 2009.
doi:10.1364/OE.17.014800        Google Scholar

42. Vasquez, F. G., G. W. Milton, and D. Onofrei, "Active exterior cloaking for the 2D laplace and helmholtz equations," Phys. Rev. Lett., Vol. 103, 073901, 2009.
doi:10.1103/PhysRevLett.103.073901        Google Scholar

43. Alitalo, P., O. Luukkonen, L. Jylh, J. Venermo, and S. A. Tretyakov, "Transmission-line networks cloaking objects from electromagnetic fields," IEEE Trans. Antennas Propag., Vol. 56, 416-424, 2008.
doi:10.1109/TAP.2007.915469        Google Scholar

44. Alitalo, P., F. Bongard, J. Zurcher, J. Mosig, and S. Tretyakov, "Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks," Appl. Phys. Lett., Vol. 94, 014103, 2009.
doi:10.1063/1.3068749        Google Scholar

45. Yu, G. X., T. J. Cui, and W. X. Jiang, "Design of transparent structure using metamaterial," J. Infrared Milli. Terahz Waves, Vol. 30, 633-641, 2009.
doi:10.1007/s10762-009-9484-8        Google Scholar

46. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, 247, 2006.
doi:10.1088/1367-2630/8/10/247        Google Scholar

47. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, No. 21, 9794-9804, 2006.
doi:10.1364/OE.14.009794        Google Scholar

48. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys., Vol. 8, 248, 2006.
doi:10.1088/1367-2630/8/10/248        Google Scholar