1. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media --- I: Magnetized plasma," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739 Google Scholar
2. Hunsberger, F. P., "Extension of the finite-difference time-domain method to gyrotropic media," Ph.D. Dissertation, 1991. Google Scholar
3. Yaich, M. I., M. Khalladi, I. Zekik, and J. A. Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 293-295, 2002.
doi:10.1109/LMWC.2002.802027 Google Scholar
4. Yaich, M. I. and M. Khalladi, "A SCN-TLM Model for the analysis of ferrite media," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 217-219, 2003.
doi:10.1109/LMWC.2003.814105 Google Scholar
5. Paul, J., C. Christopoulos, D. W. P. Thomas, and , "Generalized material models in TLM --- Part 2: Materials with anisotropic properties," EEE Trans. on Antennas and Propagation, Vol. 47, No. 10, 1535-1542, 1999.
doi:10.1109/8.805896 Google Scholar
6. Vich, R., Z Trasform Theory and Applications, D. Reidel Publishing Company, 1987.
7. Sullivan, D., "Frequency-dependent FDTD methods using Z transform," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455 Google Scholar
8. Sullivan, D. M., "Nonlinear FDTD formulations using Z transforms," IEEE Trans. on Microwave Theory Tech., Vol. 43, No. 3, 676-682, 1995.
doi:10.1109/22.372115 Google Scholar
9. Sullivan, D., "Z-Transform theory and the FDTD method," IEEE Trans. on Antennas and Propagation, Vol. 44, No. 1, 28-34, 1996.
doi:10.1109/8.477525 Google Scholar
10. Huang, Sh. J. and F. Li, "FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms," International Journal of Infrared and Millimeter Waves, Vol. 25, No. 5, 815-825, 2004.
doi:10.1023/B:IJIM.0000027582.30125.16 Google Scholar
11. Paul, J., "Modelling of general electromagnetic material properties in TLM," Ph.D. Dissertation, 1998. Google Scholar
12. Yagli, A. F., E. Arvas, and J. K. Lee, "Electromagnetic scattering from three-dimensional gyrotropic objects at single frequency using the TLM method," ACES Conference, 642-648, March 12 2006. Google Scholar
13. Yagli, A. F., J. K. Lee, and E. Arvas, "Monochromatic scattering from three-dimensional gyrotropic bodies using the TLM method," ACES Journal, Vol. 22, No. 1, 155-163, 2007. Google Scholar
14. Erkut, H. H., A. F. Yagli, and E. Arvas, "Electromagnetic scattering from a three-dimensional chiral body using the TLM method," ACES Conference, 649-654, March 12 2006. Google Scholar
15. Demir, V., "Electromagnetic scattering from three-dimensional chiral objects using the FDTD method," Ph.D. Dissertation, 2004. Google Scholar
16. Demir, V., A. Z. Elsherbeni, D. Worasawate, and E. Arvas, "A graphical user interface (GUI) for plane wave scattering from a conducting, dielectric or a chiral sphere," IEEE Antennas and Propagation Magazine, Vol. 46, No. 5, 94-99, 2004.
doi:10.1109/MAP.2004.1388838 Google Scholar
17. Soohoo, R. F., Microwave Magnetics, Harper & Row Publishers, 1985.
18. Geng, Y. L. and X. B. Wu, "A plane electromagnetic wave scattering by a ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 161-179, 2004.
doi:10.1163/156939304323062022 Google Scholar