1. Casimir, H., "On the atttraction between two perfectly conducting plates," Proc. Kon. Ned. Ak. Wet., Vol. 51, 793, 1948. Google Scholar
2. Lifshitz, E., "The theory of molecular attractive forces between solids," ZhETF, Vol. 29, 94-105, 1956. (Sov. Phys. JETP, Vol. 2, 73-83, 1956).. Google Scholar
3. Dzyaloshinskii, I. E., E. M. Lifshitz, and L. P. Pitaevskii, "The general theory of van der Waals forces," Adv. Phys., Vol. 10, 165-209, 1961.
doi:10.1080/00018736100101281 Google Scholar
4. Van Kampen, N. G., B. R. A. Nijboer, and K. Schram, "On the macroscopic theory of van der Waals forces," Phys. Lett. A, Vol. 26, 307-308, 1968.
doi:10.1016/0375-9601(68)90665-8 Google Scholar
5. Gerlach, E., "Equivalence of van der Waals forces between solids and the surface-plasmon interaction," Phys. Rev. B, Vol. 4, 393-396, 1971.
doi:10.1103/PhysRevB.4.393 Google Scholar
6. Schram, K., "On the macroscopic theory of retarded van der Waals forces ," Phys. Lett. A, Vol. 43, 282-284, 1973.
doi:10.1016/0375-9601(73)90307-1 Google Scholar
7. Heinrichs, J., "Theory of van der Waals interaction between metal surfaces," Phys. Rev. B, Vol. 11, 3625-3636, 1975.
doi:10.1103/PhysRevB.11.3625 Google Scholar
8. Milloni, P. W. and The Quantum Vacuum, , Academic Press, San Diego, 1994.
9. Mostepanenko, V. M. and N. N. Trunov, "The Casimir Effect and Its Applications," Clarendon, Oxford, 1997. Google Scholar
10. Lamoreaux, S. K., "Demonstration of the Casimir force in the 0.6 to 6 μm range," Phys. Rev. Lett., Vol. 78, 5-8, 1997.
doi:10.1103/PhysRevLett.78.5 Google Scholar
11. Lambrecht, A. and S. Reynard, "Comment on ``Demonstration of the Casimir force in the 0.6 to μm range"," Phys. Rev. Lett., Vol. 84, 5672-5672, 2000.
doi:10.1103/PhysRevLett.84.5672 Google Scholar
12. Lamoreaux, S. K., "Calculation of the Casimir force between imperfectly conductiong plates," Phys. Rev. A, Vol. 59, R3149-R3153, 1999.
doi:10.1103/PhysRevA.59.R3149 Google Scholar
13. Bordag, M., U. Mohideen, and V. Mostepanenko, "New developments in the Casimir e®ect," Phys. Reps., Vol. 353, 1-205, 2001.
doi:10.1016/S0370-1573(01)00015-1 Google Scholar
14. Milton, K. A. and The Casimir Effect, , World Scientific, Singapore, 2001.
15. Genet, C., A. Lambrecht, and S. Reynaud, "Casimir force and the quantum theory of lossy optical cavities," Phys. Rev. A, Vol. 67. Google Scholar
16. Chen, F., U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, "Investigation of the Casimir force between metal and semiconductor test bodies," Phys. Rev. A, Vol. 72, No. 2, 2005.
doi:10.1103/PhysRevA.72.020101 Google Scholar
17. Lamoreaux, S. K., "The Casimir force: Background, experiments and applications," Reps. Progr. Phys., Vol. 65, 201-236, 2005.
doi:10.1088/0034-4885/68/1/R04 Google Scholar
18. Intravaia, F., Effet Casimir et interaction entre plasmons de surface, These de Doctorat de l'Universite Paris VI, 1-177, Jun. 2005.
19. Obrecht, J. M., R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, "Measurement of the temperature dependence of the Casimir-Polder force," Phys. Rev. Lett., Vol. 98, 063201, 1-4, 2007. Google Scholar
20. Intravaia, F., C. Henkel, and A. Lambrecht, "Role of surface plasmons in the Casimir effect," Phys. Rev. A, Vol. 76, 033820, 1-11, 2007. Google Scholar
21. Lorentz, H. A., The Theory of Electrons, Leipzig, Teubner, 1916.
22. Born, M. and E. Wolf, Principles of Optics, Pergamon, London, 1959.
23. Apostol, M. and G. Vaman, "Plasmons and polaritons in a semiinfinite plasma and a plasma slab," Physica B, Vol. 404, 3775-3781, 2009.
doi:10.1016/j.physb.2009.06.138 Google Scholar
24. Ritchie, R. H., "Plasma losses by fast electrons in thin films," Phys. Rev., Vol. 106, 874-881, 1957.
doi:10.1103/PhysRev.106.874 Google Scholar
25. Stern, E. A. and R. A. Ferrell, "Surface plasma oscillations of a degenerate electron gas," Phys. Rev., Vol. 120, 130-136, 1960.
doi:10.1103/PhysRev.120.130 Google Scholar
26. Eguiluz, A. and J. J. Quinn, "Hydrodynamic model for surface plasmons in metals and degenerate semiconductors," Phys. Rev. B, Vol. 14, 1347-1361, 1976.
doi:10.1103/PhysRevB.14.1347 Google Scholar
27. DasSarma, S. and J. J. Quinn, "Hydrodynamic model of linear response for a jellium surface: Non-retarded limit," Phys. Rev. B, Vol. 20, 4872-4882, 1979.
doi:10.1103/PhysRevB.20.4872 Google Scholar
28. Glass, N. E. and A. A Maradudin, "Surface plasmons on a large-amplitude grating," Phys. Rev. B, Vol. 24, 595-602, 1981.
doi:10.1103/PhysRevB.24.595 Google Scholar
29. DasSarma, S. and J. J. Quinn, "Collective excitations in semiconductor superlattices," Phys. Rev. B, Vol. 25, 7603-7618, 1982.
doi:10.1103/PhysRevB.25.7603 Google Scholar
30. Schaich, W. L. and J. F. Dobson, "Excitation modes of neutral jellium slabs," Phys. Rev. B, Vol. 49, 14700-14707, 1994.
doi:10.1103/PhysRevB.49.14700 Google Scholar
31. Link, G. and R. V. Baltz, "Hydrodynamic description of surface plasmons: Nonexistence of the unrestricted half-space solution," Phys. Rev. B, Vol. 60, 16157-16163, 1999.
doi:10.1103/PhysRevB.60.16157 Google Scholar
32. Landau, L. and E. Lifshitz, Course of Theoretical Physics, No. 5, (Statistical Physics), Part 2, Butterworth-Heinemann, Oxford, 2003.
33. Galkina, E. G., B. A. Ivanov, S. Savelev, V. A. Yampolskii, and F. Nori, "Drastic change of the Casimir force at the metal-insulator transition," Phys. Rev. B, Vol. 80, 125119, 1-11, 2009. Google Scholar
34. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 714-715, Academic Press, 2000.
35. Whittaker, E. T. and G. N.Watson, Course of Modern Analysis, Cambridge, 2004.
36. Casimir, H. B. G. and D. Polder, "The influence of retardation on the London-van der Waals forces," Phys. Rev., Vol. 73, 360-372, 1948.
doi:10.1103/PhysRev.73.360 Google Scholar