Vol. 19
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-01-06
Electromagnetic Eigenmodes in Matter. Van Der Waals-London and Casimir Forces
By
Progress In Electromagnetics Research B, Vol. 19, 115-131, 2010
Abstract
We derive van der Waals-London and Casimir forces by calculating the eigenmodes of the electromagnetic field interacting with two semi-infinite bodies (two halves of space) with parallel surfaces separated by distance d. We adopt simple models for metals and dielectrics, well-known in the elementary theory of dispersion. In the non-retarded (Coulomb) limit we get a d-3-force (van der Waals-London force), arising from the zero-point energy (vacuum fluctuations) of the surface plasmon modes. When retardation is included we obtain a d-4-(Casimir) force, arising from the zero-point energy of the surface plasmon-polariton modes (evanescent modes) for metals, and from propagating (polaritonic) modes for identical dielectrics. The same Casimir force is also obtained for "fixed surfaces" boundary conditions, irrespective of the pair of bodies. The approach is based on the equation of motion of the polarization and the electromagnetic potentials, which lead to coupled integral equations. These equations are solved, and their relevant eigenfrequencies branches are identified.
Citation
Marian Apostol, and Georgeta Vaman, "Electromagnetic Eigenmodes in Matter. Van Der Waals-London and Casimir Forces," Progress In Electromagnetics Research B, Vol. 19, 115-131, 2010.
doi:10.2528/PIERB09111904
References

1. Casimir, H., "On the atttraction between two perfectly conducting plates," Proc. Kon. Ned. Ak. Wet., Vol. 51, 793, 1948.        Google Scholar

2. Lifshitz, E., "The theory of molecular attractive forces between solids," ZhETF, Vol. 29, 94-105, 1956. (Sov. Phys. JETP, Vol. 2, 73-83, 1956)..        Google Scholar

3. Dzyaloshinskii, I. E., E. M. Lifshitz, and L. P. Pitaevskii, "The general theory of van der Waals forces," Adv. Phys., Vol. 10, 165-209, 1961.
doi:10.1080/00018736100101281        Google Scholar

4. Van Kampen, N. G., B. R. A. Nijboer, and K. Schram, "On the macroscopic theory of van der Waals forces," Phys. Lett. A, Vol. 26, 307-308, 1968.
doi:10.1016/0375-9601(68)90665-8        Google Scholar

5. Gerlach, E., "Equivalence of van der Waals forces between solids and the surface-plasmon interaction," Phys. Rev. B, Vol. 4, 393-396, 1971.
doi:10.1103/PhysRevB.4.393        Google Scholar

6. Schram, K., "On the macroscopic theory of retarded van der Waals forces ," Phys. Lett. A, Vol. 43, 282-284, 1973.
doi:10.1016/0375-9601(73)90307-1        Google Scholar

7. Heinrichs, J., "Theory of van der Waals interaction between metal surfaces," Phys. Rev. B, Vol. 11, 3625-3636, 1975.
doi:10.1103/PhysRevB.11.3625        Google Scholar

8. Milloni, P. W. and The Quantum Vacuum, , Academic Press, San Diego, 1994.

9. Mostepanenko, V. M. and N. N. Trunov, "The Casimir Effect and Its Applications," Clarendon, Oxford, 1997.        Google Scholar

10. Lamoreaux, S. K., "Demonstration of the Casimir force in the 0.6 to 6 μm range," Phys. Rev. Lett., Vol. 78, 5-8, 1997.
doi:10.1103/PhysRevLett.78.5        Google Scholar

11. Lambrecht, A. and S. Reynard, "Comment on ``Demonstration of the Casimir force in the 0.6 to μm range"," Phys. Rev. Lett., Vol. 84, 5672-5672, 2000.
doi:10.1103/PhysRevLett.84.5672        Google Scholar

12. Lamoreaux, S. K., "Calculation of the Casimir force between imperfectly conductiong plates," Phys. Rev. A, Vol. 59, R3149-R3153, 1999.
doi:10.1103/PhysRevA.59.R3149        Google Scholar

13. Bordag, M., U. Mohideen, and V. Mostepanenko, "New developments in the Casimir e®ect," Phys. Reps., Vol. 353, 1-205, 2001.
doi:10.1016/S0370-1573(01)00015-1        Google Scholar

14. Milton, K. A. and The Casimir Effect, , World Scientific, Singapore, 2001.

15. Genet, C., A. Lambrecht, and S. Reynaud, "Casimir force and the quantum theory of lossy optical cavities," Phys. Rev. A, Vol. 67.        Google Scholar

16. Chen, F., U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, "Investigation of the Casimir force between metal and semiconductor test bodies," Phys. Rev. A, Vol. 72, No. 2, 2005.
doi:10.1103/PhysRevA.72.020101        Google Scholar

17. Lamoreaux, S. K., "The Casimir force: Background, experiments and applications," Reps. Progr. Phys., Vol. 65, 201-236, 2005.
doi:10.1088/0034-4885/68/1/R04        Google Scholar

18. Intravaia, F., Effet Casimir et interaction entre plasmons de surface, These de Doctorat de l'Universite Paris VI, 1-177, Jun. 2005.

19. Obrecht, J. M., R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, "Measurement of the temperature dependence of the Casimir-Polder force," Phys. Rev. Lett., Vol. 98, 063201, 1-4, 2007.        Google Scholar

20. Intravaia, F., C. Henkel, and A. Lambrecht, "Role of surface plasmons in the Casimir effect," Phys. Rev. A, Vol. 76, 033820, 1-11, 2007.        Google Scholar

21. Lorentz, H. A., The Theory of Electrons, Leipzig, Teubner, 1916.

22. Born, M. and E. Wolf, Principles of Optics, Pergamon, London, 1959.

23. Apostol, M. and G. Vaman, "Plasmons and polaritons in a semiinfinite plasma and a plasma slab," Physica B, Vol. 404, 3775-3781, 2009.
doi:10.1016/j.physb.2009.06.138        Google Scholar

24. Ritchie, R. H., "Plasma losses by fast electrons in thin films," Phys. Rev., Vol. 106, 874-881, 1957.
doi:10.1103/PhysRev.106.874        Google Scholar

25. Stern, E. A. and R. A. Ferrell, "Surface plasma oscillations of a degenerate electron gas," Phys. Rev., Vol. 120, 130-136, 1960.
doi:10.1103/PhysRev.120.130        Google Scholar

26. Eguiluz, A. and J. J. Quinn, "Hydrodynamic model for surface plasmons in metals and degenerate semiconductors," Phys. Rev. B, Vol. 14, 1347-1361, 1976.
doi:10.1103/PhysRevB.14.1347        Google Scholar

27. DasSarma, S. and J. J. Quinn, "Hydrodynamic model of linear response for a jellium surface: Non-retarded limit," Phys. Rev. B, Vol. 20, 4872-4882, 1979.
doi:10.1103/PhysRevB.20.4872        Google Scholar

28. Glass, N. E. and A. A Maradudin, "Surface plasmons on a large-amplitude grating," Phys. Rev. B, Vol. 24, 595-602, 1981.
doi:10.1103/PhysRevB.24.595        Google Scholar

29. DasSarma, S. and J. J. Quinn, "Collective excitations in semiconductor superlattices," Phys. Rev. B, Vol. 25, 7603-7618, 1982.
doi:10.1103/PhysRevB.25.7603        Google Scholar

30. Schaich, W. L. and J. F. Dobson, "Excitation modes of neutral jellium slabs," Phys. Rev. B, Vol. 49, 14700-14707, 1994.
doi:10.1103/PhysRevB.49.14700        Google Scholar

31. Link, G. and R. V. Baltz, "Hydrodynamic description of surface plasmons: Nonexistence of the unrestricted half-space solution," Phys. Rev. B, Vol. 60, 16157-16163, 1999.
doi:10.1103/PhysRevB.60.16157        Google Scholar

32. Landau, L. and E. Lifshitz, Course of Theoretical Physics, No. 5, (Statistical Physics), Part 2, Butterworth-Heinemann, Oxford, 2003.

33. Galkina, E. G., B. A. Ivanov, S. Savelev, V. A. Yampolskii, and F. Nori, "Drastic change of the Casimir force at the metal-insulator transition," Phys. Rev. B, Vol. 80, 125119, 1-11, 2009.        Google Scholar

34. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 714-715, Academic Press, 2000.

35. Whittaker, E. T. and G. N.Watson, Course of Modern Analysis, Cambridge, 2004.

36. Casimir, H. B. G. and D. Polder, "The influence of retardation on the London-van der Waals forces," Phys. Rev., Vol. 73, 360-372, 1948.
doi:10.1103/PhysRev.73.360        Google Scholar