Vol. 15
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-06-11
New Composite Power Plane Using Spiral EBG and External Magnetic Material for SSN Suppression
By
Progress In Electromagnetics Research Letters, Vol. 15, 69-77, 2010
Abstract
A new composite power plane using spiral electromagnetic bandgap (EBG) and external magnetic material is proposed for simultaneous switching noise (SSN) suppression in mixed-signal systems. The proposed power plane has an external magnetic material partially placed on the top of perforated spiral-bridged EBG plane. The EBG bandgap is shifted to lower frequencies by the real part of the permeability (μr') and the power plane Q-factor is decreased by the imaginary part of the permeability (μr") associated with the magnetic loss. 30 dB suppression of the SSN propagation has been measured from 190 MHz to 1 GHz by virtue of the complex permeability. The proposed EBG power plane is expected to reduce the circuit size and to improve the power integrity of the mixed-signal systems.
Citation
Dong-Sik Eom, Jindo Byun, and Hai-Young Lee, "New Composite Power Plane Using Spiral EBG and External Magnetic Material for SSN Suppression," Progress In Electromagnetics Research Letters, Vol. 15, 69-77, 2010.
doi:10.2528/PIERL10012104
References

1. Kamgaing, T. and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 1, 21-23, Jan. 2003.
doi:10.1109/LMWC.2002.807713

2. Abhari, R. and G. V. Eleftheriades, "Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high speed circuits," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 6, 1629-1639, Jun. 2003.
doi:10.1109/TMTT.2003.812555

3. Ricchiuti, V., "Power-supply decoupling on fully populated highspeed digital PCBs," IEEE Trans. Electromagn. Compat., Vol. 43, No. 4, 671-676, Nov. 2001.
doi:10.1109/15.974649

4. Xu, M., T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, "Power-bus decoupling with embedded capacitance in printed circuit board design," IEEE Trans. Electromagn. Compat., Vol. 45, No. 1, 22-30, Feb. 2003.
doi:10.1109/TEMC.2002.808075

5. Wu, T. L., C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang, "A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 7, 337-339, Jul. 2004.

6. Wu, T. L., C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang, "A novel power plane with super wideband elimination of ground bounce noise on high speed circuits," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 3, 174-176, Mar. 2005.
doi:10.1109/LMWC.2005.844216

7. Kim, D.-Y., S.-H. Joo, and H.-Y. Lee, "A hybrid-cell EBG power plane for ultra-wideband suppression of ground bounce noise," Microwave & Opt. Tech. Lett., Vol. 49, No. 11, Nov. 2007.

8. Joo, S.-H., D.-Y. Kim, and H.-Y. Lee, "A S-bridged inductive electromagnetic bandgap power plane for suppression of ground bounce noise," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 10, 709-711, Oct. 2007.
doi:10.1109/LMWC.2007.905604

9. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

10. Eom, D-.S., D.-Y. Kim, J. Byun, and H.-Y. Lee, "Composite EBG power plane using magnetic materials for SSN suppression in high-speed digital circuits," The Journal of Korea Electromagnetic Engineering Society, Vol. 19, No. 8, 933-939, Aug. 2008.
doi:10.5515/KJKIEES.2008.19.8.933

11. Toyota, Y., K. Iokibe, R. Koga, A. E. Engin, T. H. Kim, and M. Swaminathan, "Miniaturization of electromagnetic bandgap structures with high-permeability magnetic metal sheet," IEEE International Symposium on Electromagnetic Compatibility, Jul. 2007.