Vol. 15
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-06-11
Omnidirectional Horizontally Polarized Antenna with EBG Cavity for Gain Enhancement
By
Progress In Electromagnetics Research Letters, Vol. 15, 79-87, 2010
Abstract
An omnidirectional horizontally polarized antenna with improved gain is realized by using EBG cavity. The EBG cavity is composed of ring metallic strips etched on thin FR4 substrate and two metallic reflectors installed on up/down sides, which is designed to have a low effective index of refraction (n<1). The metallic strips are arranged in concave shape. Compared with the antenna without EBG cavity, the EBG cavity makes the vertical beam become narrow and effectively improves the omnidirectional antenna gain. An experimental prototype is fabricated to validate the proposed analysis. Measured data show the gain of the antenna with the EBG cavity improved by about 2.72 dBi at 5.7 GHz, and the measured data have a good agreement with numerical results.
Citation
Huan-Huan Xie, Yong-Chang Jiao, Li-Na Chen, and Fu-Shun Zhang, "Omnidirectional Horizontally Polarized Antenna with EBG Cavity for Gain Enhancement," Progress In Electromagnetics Research Letters, Vol. 15, 79-87, 2010.
doi:10.2528/PIERL10042207
References

1. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410(1)-155410(13), Apr. 2007.

2. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 046608(1)-046608(12), Oct. 2004.

3. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using near-zero-materials," Phys. Rev. Lett., Vol. 97, 157403(1)-157403(4), Oct. 2006.

4. Lovat, G., P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Trans. Antennas and Propagation, Vol. 54, 1017-1030, Mar. 2006.
doi:10.1109/TAP.2006.869925

5. Xin, H. and R. Zhou, "Low-effective index of refraction medium using metallic wire array," IEEE AP-S Int. Symp. Dig., 2530-2533, Jun. 2007.

6. Zhou, R., H. Zhang, and H. Xin, "Experimental demonstration of narrow beam monopole antenna embedded in low effective index of refraction (n < 1) wire medium," Microwave and Optical Technology Letters, Vol. 50, No. 9, 2341-2345, Sep. 2008.
doi:10.1002/mop.23653

7. Zhou, R., H. Zhang, and H. Xin, "Metallic wire array as low-effective index of refraction medium for directive antenna application," IEEE Trans. Antennas and Propagation, Vol. 58, No. 1, 79-87, Jun. 2010.
doi:10.1109/TAP.2009.2036282

8. Boutayeb, H., T. A. Denidni, K. Mahdjoubi, A. C. Tarot, A. R. Sebak, and L. Talbi, "Analysis and design of a cylindrical EBG-based directive antenna," IEEE Trans. Antennas and Propagation, Vol. 54, No. 1, 211-219, Jan. 2006.
doi:10.1109/TAP.2005.861560

9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773

10. Ghanem, F., G. Y. Delisle, T. A. Denidni, and K. Ghanem, "A directive dual-band antenna based on metallic electromagnetic crystals," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 384-387, 2006.
doi:10.1109/LAWP.2006.881917

11. Ahn, C. H., S. W. Oh, and K. Chang, "A dual-frequency omnidirectional antenna for polarization diversity of MIMO and wireless communication applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 966-969, 2009.
doi:10.1109/LAWP.2009.2030135

12. Ansoft Corporation [Online], Available: http://www.ansoft.com/products/hf/hfss/.

13. Pozar, D. M., Microwave Engineering, 3rd Ed., No. 1, John Wiley & Sons, Inc., 2005.