1. Shen, G.-F., X.-M. Zhang, H. Chi, and X.-F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202 Google Scholar
2. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309 Google Scholar
3. Guenneau, S., A., Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003. Google Scholar
4. Yue, Y., G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett., Vol. 32, 469-471, 2007.
doi:10.1364/OL.32.000469 Google Scholar
5. Steel, M. J. and R. M. Osgood Jr., "Elliptical hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229 Google Scholar
6. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040 Google Scholar
7. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell of elliptical-hole with squeezed triangular lattice," Jpn. J. Appl. Phys., Vol. 46, 1048-1051, 2007.
doi:10.1143/JJAP.46.L1048 Google Scholar
8. Jin, J., The Finite Element Method in Electromagnetics, John Wiley and Sons, Inc., 2002.
9. Bach, H. and N. Neuroth, The Properties of Optical Glass, Springer, 1995.
10. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325 Google Scholar
11. Chen, D., M.-L. Vincent Tse, and H.-Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701 Google Scholar
12. Liu, Y. C and Y. Lai, "Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: Numerical analysis," Opt. Express, Vol. 13, 225-235, 2005.
doi:10.1364/OPEX.13.000225 Google Scholar
13. Kim, B. Y., J. N. Blake, S. Y. Huang, and H. J. Shaw, "Use of highly elliptical core fibers for two-mode fiber devices," Opt. Lett., Vol. 12, 729-731, 1987.
doi:10.1364/OL.12.000729 Google Scholar
14. Blake, J. N., S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett., Vol. 12, 732-734, 1987.
doi:10.1364/OL.12.000732 Google Scholar
15. Falkenstein, P., C. D. Merritt, and B. L. Justus, "Fused performs for the fabrication of photonic crystal fibers," Opt. Lett., Vol. 29, 1858-1860, 2004.
doi:10.1364/OL.29.001858 Google Scholar
16. Issa, N. A., M. A. V. Eijkelenborg, and M. Fellew, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett., Vol. 29, 1336-1338, 2004.
doi:10.1364/OL.29.001336 Google Scholar
17. Domachuk, P., A. Chapman, E. Mägi, M. J. Steel, H. C. Nguyen, and B. J. Eggleton, "Transverse characterization of high air-fill fraction tapered photonic crystal fiber," Appl. Opt., Vol. 44, 3885-3892, 2005.
doi:10.1364/AO.44.003885 Google Scholar