1. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075 Google Scholar
2. Sun, C. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations," Electron. Lett., Vol. 39, No. 7, 595-597, 2003.
doi:10.1049/el:20030416 Google Scholar
3. Shibayama, J., M. Muraki, J.Yamauchi, et al. "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381 Google Scholar
4. Grande, A., I. Barba, A. C. L. Cabeceira, et al. "FDTD modeling of transient microwave signals in dispersive and lossy bi-isotropic media," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 773-784, 2004.
doi:10.1109/TMTT.2004.823537 Google Scholar
5. Grande, A., I. Barba, A. C. L. Cabeceira, et al. "Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 375-377, 2005.
doi:10.1109/LMWC.2005.847732 Google Scholar
6. Ji, F., K. N. Yung Edward, and X. Q. Sheng, "Three-dimensional FDTD analysis of chiral discontinuities in the waveguide," Int. J. Infrared Millimeter Waves, Vol. 23, No. 10, 1521-1528, 2002.
doi:10.1023/A:1020385721043 Google Scholar
7. Demir, V., A. Elsherbeni, and E. Arvas, "FDTD formulations for scattering from three dimensional chiral objects," 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse, NY, 2004. Google Scholar
8. Akyurtlu, A., "Modeling of bi-anisotropic media using the finite-difference time-domain method,", Ph.D. dissertation, Dept. of Electrical Engineering, Pennsylvania State Univ., University Park, 2001. Google Scholar
9. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media ," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 416-425, 2004.
doi:10.1109/TAP.2004.823956 Google Scholar
10. Alcantara, L. D. S., "An unconditionally stable FDTD method for electromagnetic wave propagation analysis in bi-isotropic media," IEEE MTT-S, 661-664, Brasilia, Brazil, 2006. Google Scholar
11. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.
12. Sihvola, A. H., "Electromagnetic modeling of bi-isotropic media," Progress In Electromagnetics Research, Vol. 09, 45-86, 1994. Google Scholar
13. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104 Google Scholar
14. Shi, Y. and C. H. Chan, "Solution to electromagnetic scattering by bi-isotropic media using multilevel Green's function interpolation method," Progress In Electromagnetics Research, Vol. 97, 259-274, 2009.
doi:10.2528/PIER09092001 Google Scholar
15. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Electromagnetic wave propagation in chiral H-guides," Progress In Electromagnetics Research, Vol. 103, 285-303, 2010.
doi:10.2528/PIER10032106 Google Scholar
16. Gomez, A., A. Lakhtakia, J. Margineda, et al. "Full-wave hybrid technique for 3D isotropic-chiral-material discontinuities in rectangular waveguides: Theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 12, 2815-2825, 2008.
doi:10.1109/TMTT.2008.2007190 Google Scholar
17. Stefanski, T. and T. D. Drysdale, "Improved implementation of the Mur first-order absorbing boundary condition in the ADIFDTD method," Microwave Opt. Technol., Vol. 50, No. 7, 1757-1761, 2008.
doi:10.1002/mop.23508 Google Scholar