Vol. 16
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-07-28
Design of Wideband Substrate Integrated Circular Cavity (SICC) Filter Using TM01 Mode Coupling
By
Progress In Electromagnetics Research Letters, Vol. 16, 79-87, 2010
Abstract
A novel type of wideband SICC filter using TM01 mode coupling by the circular hole between the SICCs is proposed. Of circular symmetry, the TM01 mode in SICC demonstrates the advantages of compact and high flexibility of the filter's input and output setting. In order to validate the new proposed topology, three filter prototypes with different included angle between input and output have been designed and manufactured. The filters exhibit a low insertion loss of -1 dB in the 12.8 to 20 GHz, a wide relative bandwidth of 54.5% at -3 dB, high flexibility and very good agreement with simulation data.
Citation
Boren Zheng, Zhiqin Zhao, and Youxin Lv, "Design of Wideband Substrate Integrated Circular Cavity (SICC) Filter Using TM01 Mode Coupling," Progress In Electromagnetics Research Letters, Vol. 16, 79-87, 2010.
doi:10.2528/PIERL10061502
References

1. Chien, H. and T. Shen, "Miniaturized bandpass filters with double folded substrate integrated waveguide resonators in LTCC," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 7, 1774-1782, July 2009.
doi:10.1109/TMTT.2009.2022591

2. Tang, H., W. Hong, J. Chen, G. Q. Luo, and K. Wu, "Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 776-782, April 2007.
doi:10.1109/TMTT.2007.893655

3. Mira, F., J. Mateu, and S. Cogollos, "Design of ultra-wideband substrate integrated waveguide (SIW) filters in zigzag topology," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 5, 281-283, May 2009.
doi:10.1109/LMWC.2009.2017589

4. Shen, W., L. Wu, and X. Sun, "Novel substrate integrated waveguide filters with mixed cross coupling (MCC)," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 11, 701-703, May 2009.
doi:10.1109/LMWC.2009.2032007

5. Potelon, B., J. Favennec, and C. Quendo, "Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 9, 596-598, May 2009.
doi:10.1109/LMWC.2008.2002454

6. Gu, J., Y. Fan, and Y. Zhang, "A low-loss SICC filter using LTCC technology, for X-band application E," IEEE Conf. On Applied Superconductivity and Electromagnetic Devices, 152-154, 2009.
doi:10.1109/ASEMD.2009.5306674

7. Hao, Z., W. Hong, J. Chen, X. Chen, and K.Wu, "Compact super-wide bandpass substrate integrated waveguide (SIW) filters," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2968-2977, September 2005.
doi:10.1109/TMTT.2005.854232

8. Pozar, D. M., Microwave Engineering, 2 Ed., Wiley, New York, 1998.

9. Accatino, L. and G. Bertin, "Design of coupling Irises between circular cavities by modal analysis," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 7, 1307-1313, July 1994.
doi:10.1109/22.299723

10. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619