Vol. 24
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-12
Sensitivity of Chirowaveguides to Circular Birefringence by First Order Perturbation Theory
By
Progress In Electromagnetics Research B, Vol. 24, 155-172, 2010
Abstract
Planar waveguides with an isotropic chiral core, called chirowaveguides, support the propagation of elliptically polarized modes, making them natural candidates for chiral sensing. We investigate the potential of chirowaveguides as optical sensors responding to changes in the circular birefringence of a medium covering the waveguide. Using first order approximations, we derive expressions for the sensitivities to refractive index and to changes in circular birefringence. The chiral sensitivity is proportional to the achiral sensitivity and to the eccentricity of the mode under consideration. Possible combinations of materials and design conditions for chirowaveguide sensors are discussed with reference to these results. The motivation for this study, besides its theoretical and academic importance, comes from potential applications for enantiomeric integrated optical devices.
Citation
Stephan Guy, A. Bensalah-Ledoux, and A. Stoita, "Sensitivity of Chirowaveguides to Circular Birefringence by First Order Perturbation Theory," Progress In Electromagnetics Research B, Vol. 24, 155-172, 2010.
doi:10.2528/PIERB10062804
References

1. Barron, L. D., Molecular Light Scattering and Oprical Activity, Cambridge University Press, Cambridge, 2004.
doi:10.1017/CBO9780511535468

2. Torsi, L., G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, "A sensitivity-enhanced field-effect chiral sensor," Nat. Mater., Vol. 7, No. 5, 412-417, 2008.
doi:10.1038/nmat2167

3. Engheta, N. and P. Pelet, "Modes in chirowaveguides," Opt. Lett., Vol. 14, No. 11, 593-595, 1989.
doi:10.1364/OL.14.000593

4. Herman, W. N., "Polarization eccentricity of the transverse field for modes in chiral core planar waveguides," J. Opt. Soc. Am. A, Vol. 18, No. 11, 2806-2818, 2001.
doi:10.1364/JOSAA.18.002806

5. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. Antennas Prop, Vol. 38, No. 1, 90-98, January, 1990.
doi:10.1109/8.43593

6. Demidov, S. V., K. V. Kushnarev, and V. V. Shevchenko, "Dispersion properties of the modes of chiral planar optical waveguides," J. Comm. Tech. Electron., Vol. 44, 827-832, 1999.

7. Bahar, E., "Mueller matrices for waves reflected and transmitted through chiral materials: Waveguide modal solutions and applications," J. Opt. Soc. Am. B, Vol. 24, 1610-1619, 2007.
doi:10.1364/JOSAB.24.001610

8. Herman, W. N., "Amorphous thin films of chiral binaphtyls for photonic waveguides," J. Macromol. Sci., Part A, Pure Appl. Chem., Vol. 40, No. 12, 1369-1382, 2003.
doi:10.1081/MA-120025316

9. Guy, L., T. Vautey, and S. Guy, "The use of LCMS as an analytical tool for hydrolysis/polycondensation monitoring of a chiral ormosil precursor," Sol. Gel. Science Technologie, Vol. 52, 146-152, 2009.
doi:10.1007/s10971-009-2004-4

10. Guy, S., L. Guy, A. Bensalah, A. Pereira, V. Grenard, O. Cosso, and T. Vautey, "Pure chiral organic thin films with high isotropic optical activity synthesized by UV pulsed laser deposition," J. Mater. Chem., Vol. 19, 7093-7097, 2009.
doi:10.1039/b908104f

11. Lambeck, P. V., "Integrated optical sensors for the chemical domain," Meas. Sci. Technol., Vol. 17, No. 8, R93-R116, 2006.
doi:10.1088/0957-0233/17/8/R01

12. Lukosz, W., "Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing," Biosensors and Bioelectronics, Vol. 6, No. 3, 215-225, 1991.
doi:10.1016/0956-5663(91)80006-J

13. Tiefenthaler, K. and W. Lukosz, "Sensitivity of grating couplers as integrated-optical chemical sensors," J. Opt. Soc. Am. B, Vol. 6, No. 2, 209-220, 1989.
doi:10.1364/JOSAB.6.000209

14. Lindell, V. I., A. Shivola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.

15. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.

16. Pelet, P. and N. Engheta, "Coupled-mode theory for chirowaveguides," J. Appl. Phys., Vol. 67, No. 6, 2742-2745, 1990.
doi:10.1063/1.345439

17. Parriaux, O. and G. J. Veldhuis, "Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors," J. Lightwave Technol., Vol. 16, No. 4, 573-582, 1998.
doi:10.1109/50.664066

18. Horvath, R., L. R. Lindvold, and N. B. Larsen, "Reverse-symmetry waveguides: Theory and fabrication," Appl. Phys. B, Vol. 74, 383-93, 2002.
doi:10.1007/s003400200823

19. Lukosz, W., "Integrated optical chemical and direct biochemical sensors," Sensors and Actuators B, Vol. 29, 37-50, 1995.
doi:10.1016/0925-4005(95)01661-9