Vol. 24
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-18
Design and Analysis of Microstrip Reflectarray Antenna with Minkowski Shape Radiating Element
By
Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010
Abstract
This paper describes the design and analysis of a Microstrip Reflectarray Antenna (MRA) with Minkowski shape radiating element at frequency of 11 GHz. This structure has been analyzed and compared with the traditional reflectarray element (square element patch). It is found that this antenna array has lower sidelobe level (SLL) characteristic which is down to -25 dB. This MRA has maximum realized gain of 29.6 dB with half-power beamwidth (HPBW) of 3.7°. The validation for the proposed MRA is done by comparing the simulated and measured E-plane radiation pattern. The difference margin between sweeping realized gain (simulation) and sweeping power received (measurement) had been compared within the frequency range of 10--12 GHz. A very good agreement is found from the comparison between simulation and measurement.
Citation
Farid Zubir, Mohamad Kamal Abd Rahim, Osman Ayop, and Huda Abdul Majid, "Design and Analysis of Microstrip Reflectarray Antenna with Minkowski Shape Radiating Element," Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010.
doi:10.2528/PIERB10071208
References

1. Jasik, H., Antenna Engineering Handbook, No. 12 and 15, MaGraw-Hill, 1961.

2. Legay, H., et al. "Satellite antennas based on MEMS tuneable reflectarrays," Proc. Antennas Propagation, EUCAP 2007, Vol. 1--6, No. 11--16, 2007.

3. Yuan, T., N. Yuan, L.-W. Li, and M.-S. Leong, "Design and analysis of phased antenna array with low sidelobe by fast algorithm," Progress In Electromagnetics Research, Vol. 87, 131-147, 2008.
doi:10.2528/PIER08092401

4. Targonski, S. D. and D. M. Pozar, "Analysis and design of a microstrip reflectarray using patches of variable size," IEEE Symposium on Antennas and Propagation, Vol. 3, 1820-1823, 1994.

5. Pozar, D. M. and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size," Electronic letters, 657-658, April, 1993.

6. Chacharmir, M. R., J. Shaker, M. Cuhaci, and A. Sebak, "Reflectarray with variable slots on ground plane," IEEE Proc. Microwave, Antennas and Propagat., Vol. 150, No. 6, 436-439, December, 2003.
doi:10.1049/ip-map:20030547

7. Cadoret, D., A. Laisne, R. Gillard, L. Le Coq, and H. Legay, "A new reflectarray cell using microstrip patches loaded with slots," Microwave and Optical Technology Letters, Vol. 41, No. 11, 623-624, May, 2005.

8. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing MEMS-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.2528/PIER09112506

9. Huang, J. and J. Encinar, Reflectarray Antennas, Wiley Interscience, A John Wiley & Sons, Inc., 2008.

10. Pozar, D. M. and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size," Electronic letters, 657-658, April, 1993.

11. Mahatthanajatuphat, C., S. Saleekaw, and P. Akkaraekthalin, "A rhombic patch monopole antenna with modified minkowskii fractal geometry for UMTS, WLAN, and mobile WIMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

12. Javor, R. D., X. D. Wu, and K. Chang, "Design and performance of a microstrip reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 9, September, 1995.
doi:10.1109/8.410208

13. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, February, 1997.
doi:10.1109/8.560348

14. Encinar, J. A. and J. Agustin Zornoza, "Three-layer printed reflectarrays for contoured beam space applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, May, 2004.
doi:10.1109/TAP.2004.827506

15. Pozar, D. M., "Bandwidth of reflectarrays," Electronic Letter, Vol. 39, No. 21, October 16, 2003.

16. Mahatthanajatuphat, C. and P. Akkaraekthalin, "An NP generator model for Minkowski fractal antenna," Proceeding of the 3rd ECTI-CON, Vol. 2, 749-752, 2006.

17. Parker, E. A. and S. M. A. Hamdy, "Rings elements for frequency selective surfaces," Electronics Letters, Vol. 17, No. 17, 612-614, 1982.
doi:10.1049/el:19810430

18. Cahill, R. and E. A. Parker, "Concentric ring and Jerusalem cross arrays as frequency selective surfaces for a 45゜ incident diplexer," Electronics Letters, Vol. 18, No. 8, 313-314, 1982.
doi:10.1049/el:19820213