1. AMC, , Cancer facts and figures 2009, Tech. Rep., American Cancer Society, 2009.
2. Nass, S. L., I. C. Henderson, and J. C. Lashof, "Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer," National Academy Press, 2001. Google Scholar
3. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," RadioGraphics, Vol. 18, 1137-1154, 1998. Google Scholar
4. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional fdtd analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440 Google Scholar
5. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast ," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1841-1853, 2000.
doi:10.1109/22.883861 Google Scholar
6. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
7. O'Halloran, M., M. Glavin, and E. Jones, "Effects of flbroglandular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701 Google Scholar
8. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001 Google Scholar
9. Mashal, A., B. Sitharaman, J. Booske, and S. Hagness, "Dielectric characterization of carbon nanotube contrast agents for microwave breast cancer detection," IEEE Antennas and Propagation Society International Symposium, 2009. APSURSI'09, 1-4, June 2009.
doi:10.1109/APS.2009.5171908 Google Scholar
10. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions ," IEEE Transactions on Biomedical Engineering, Vol. 47, 812, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
11. Lim, H. B., N. T. T. Nhung, E.-P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply- and sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, June 2008.
doi:10.1109/TBME.2008.919716 Google Scholar
12. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection ," International Journal of Antennas and Propogation, Vol. 2008, 9, 2008. Google Scholar
13. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetic Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205 Google Scholar
14. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection ," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350 Google Scholar
15. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multi-static adaptive microwave imaging for early breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 53, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058 Google Scholar
16. Maeda, H., "The enhanced permeability and retention (epr) e®ect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting ," Advan. Enzyme Regul., Vol. 41, 189-207, 2001.
doi:10.1016/S0065-2571(00)00013-3 Google Scholar
17. Mashal, A., J. H. Booske, and S. C. Hagness, "Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermoacoustic targets," Physics in Medicine and Biology, Vol. 54, 641-650, 2008. Google Scholar
18. Sitharaman, B. and L. J. Wilson, "Gadofullerenes and gadonanotubes: A new paradigm for high-performance magnetic resonance imaging contrast agent probes," Journal of Biomedical Nanotechnology, Vol. 3, 342-352, December 2007.
doi:10.1166/jbn.2007.043 Google Scholar
19. Mashal, A., B. Sitharaman, X. Li, P. K. Avti, A. V. Sahakian, J. H. Booske, and S. C. Hagness, "Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: Enhanced dielectric and heating response of tissue-mimicking materials," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 8, 1831-1834, August 2010.
doi:10.1109/TBME.2010.2042597 Google Scholar
20. McDevitt, M. R., D. Chattopadhyay, B. J. Kappel, J. S. Jaggi, S. R. Schi®man, C. Antczak, J. T. Njardarson, R. Brentjens, and D. A. Scheinberg, "Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes," J. Nucl. Med., Vol. 48, No. 7, 1180-1189, 2007.
doi:10.2967/jnumed.106.039131 Google Scholar
21. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, and S. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast ," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, December 2008.
doi:10.1109/TBME.2008.2002130 Google Scholar
22. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets ," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998. Google Scholar
23. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407 Google Scholar
24. Conceicao, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904 Google Scholar
25. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave and Guided Wave Letters, Vol. 7, 121-123, 1997.
doi:10.1109/75.569723 Google Scholar
26. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, Nov. 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
27. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. V. Veen, "Three dimensional microwave breast imaging: A bounded, multifrequency inverse scattering solution on a uniform voxel mesh," Proceedings of the 2008 URSI General Assembly, France, 2008. Google Scholar
28. Sacks, Z., D. Kingsland, R. Lee, and J. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075 Google Scholar