1. Gibbs, J. W., Vector Analysis, Dover, New York, 1960 (reprint from the 2nd edition of 1909).
2. Kong, J. A., Electromagnetic Wave Theory, 138, EMW Publishing, Cambridge, MA, 2005.
3. Lindell, I. V., "Methods for Electromagnetic Field Analysis,", 54, Wiley, New York, 1995. Google Scholar
4. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048 Google Scholar
5. Hehl, F. W. and Y. N. Obukhov, Foundations of Classical Electrodynamics, Birkhäuser, Boston, 2003.
6. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, New York, 2004.
7. Lindell, I. V. and H. Wallén, "Wave equations for bi-anisotropic media in differential forms," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1615-1635, 2002.
doi:10.1163/156939302X01038 Google Scholar
8. Lindell, I. V., "Dfferential forms and electromagnetic materials," Theory and Phenomena of Metamaterials, F. Capolino (ed.), 4.1-4.16, CRC Press, Boca Raton, 2009. Google Scholar
9. Lindell, I. V. and H. Wallén, "Wave equations for bi-anisotropic media in differential forms," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 957-968, 2004.
doi:10.1163/156939304323105772 Google Scholar
10. Lindell, I. V. and K. H. Wallén, "Generalized Q-media and field decomposition in differential-form approach," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1045-1056, 2004.
doi:10.1163/1569393042955397 Google Scholar
11. Szekeres, P., Modern Mathematical Physics, Cambridge University Press, 2004.
doi:10.1017/CBO9780511607066
12. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741 Google Scholar
13. Lindell, I. V., "The class of bi-anisotropic IB-media," Progress In Electromagnetics Research, Vol. 57, 1-18, 2006.
doi:10.2528/PIER05061302 Google Scholar
14. Post, E. J., Formal Structure of Electromagnetics, Dover, Mineola, NY, 1997 (reprint from the 1962 original).
15. Lindell, I. V. and A. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. Antennas Propagat., Vol. 57, No. 3, 694-700, 2009.
doi:10.1109/TAP.2009.2013431 Google Scholar
16. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary condition and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, No. 2, 026604-1-7, 2009.
doi:10.1103/PhysRevE.79.026604 Google Scholar
17. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1128-1135, Apr. 2010.
doi:10.1109/TAP.2010.2041149 Google Scholar
18. Rumsey, V. H., "Some new forms of Huygens' principle," IRE Trans. Antennas Propagat., Vol. 7, S103-S116, Special Supplement, 1959. Google Scholar
19. Zhang, B., H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside ," Phys. Rev. Lett., Vol. 100, 063904-1-4, Feb. 15, 2008. Google Scholar
20. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022-1, 2008; Corrigendum, Ibid., Vol. 11, 039802, 2009.
21. Kildal, P.-S., "Fundamental properties of canonical soft and hard surfaces, perfect magnetic conductors and the newly introduced DB surface and their relation to different practical applications included cloaking ," Proc. ICEAA'09, 607-610, Torino, Italy, Aug. 2009. Google Scholar
22. Lindell, I. V., "Electromagnetic wave equation in differential-form representation," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002 Google Scholar