1. Soekmadji, H., S. Liao, and R. J. Vernon, "Experiment and simulation on TE10 cut-off reflection phase in gentle rectangular downtapers," Progress In Electromagnetics Research Letters, Vol. 12, 79-85, 2009.
doi:10.2528/PIERL09090707 Google Scholar
2. Rothwell, E. J., A. K. Temme, and B. R. Crowgey, "Pulse reflection from a dielectric discontinuity in a rectangular waveguide," Progress In Electromagnetics Research, Vol. 97, 11-25, 2009.
doi:10.2528/PIER09090905 Google Scholar
3. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
doi:10.2528/PIER09060801 Google Scholar
4. Hammou, D., E. Moldovan, and S. O. Tatu, "V-band microstrip to standard rectangular waveguide transition using a substrate interated waveguide (SIW)," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 221-230, 2009.
doi:10.1163/156939309787604319 Google Scholar
5. Zhao, D., Y. G. Ding, Y. Wang, and C. J. Ruan, "Linear analysis of a rectangular waveguide cyclotron maser with a sheet electron beam," Phys. Plasmas, Vol. 17, No. 11, 113110, 2010.
doi:10.1063/1.3514596 Google Scholar
6. Mineo, M., A. Di Carlo, and C. Paoloni, "Analytic design method for corrugated rectangular waveguide SWS THz vacuum tubes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2479-2494, 2010.
doi:10.1163/156939310793675745 Google Scholar
7. Radack, D. J., K. Ramaswamy, W. W. Destler, and J. Rodgers, "A fundamental mode, high power, large-orbit gyrotron using a rectangular interaction region," J. Appl. Phys., Vol. 73, No. 12, 8139-8145, 1993.
doi:10.1063/1.353453 Google Scholar
8. Lau, Y. Y. and L. R. Barnett, "A note on gyrotron traveling wave amplifiers using rectangular waveguides," IEEE Trans. Electron. Devices, Vol. 30, No. 8, 908-912, 1983.
doi:10.1109/T-ED.1983.21236 Google Scholar
9. Ferendeci, A. M. and C. C. Han, "Linear analysis of an axially grooved rectangular gyrotron for harmonic operation," Int. J. Infrared Millim. Waves, Vol. 6, No. 12, 1267-1283, 1985.
doi:10.1007/BF01013214 Google Scholar
10. Soekmadji, H., S. L. Liao, and R. J. Vernon, "Trapped mode phenomena in a weakly overmoded waveguiding structure of rectangular cross section," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 143-157, 2008.
doi:10.1163/156939308783122706 Google Scholar
11. Kumar, N., U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha, "Design of 35 GHz gyrotron for material processing applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011. Google Scholar
12. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100kW cw gyrotron for plasma diagnostics: Gds-V.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
doi:10.2528/PIERB10061508 Google Scholar
13. Malek, F., J. Lucas, and Y. Huang, "The experimental result of a low power x-band free electron maser by electron pre-bunching," Progress In Electromagnetics Research, Vol. 101, 43-62, 2010.
doi:10.2528/PIER09121604 Google Scholar
14. Chu, K. R., H. Y. Chen, C. L. Hung, et al. "Theory and experiment of ultrahigh gain gyrotron travelingwave amplifier," IEEE Trans. Plasma. Sci., Vol. 27, No. 2, 391-404, 1999.
doi:10.1109/27.772266 Google Scholar
15. Jiao, C. Q. and J. R. Luo, "Study on the suppression of gyro-BWO by distributed wall losses," J. Infrared. Milli. Terahz. Waves, Vol. 30, No. 9, 924-930, 2009.
doi:10.1007/s10762-009-9522-6 Google Scholar
16. Pao, K. F., C. T. Fan, T. H. Chang, et al. "Selective suppression of high order axial modes of the gyrotron backward-wave oscillator," Physics of Plasmas, Vol. 14, No. 9, 093301, 2007.
doi:10.1063/1.2773708 Google Scholar
17. Song, H. H., D. B. McDermott, Y. Hirata, et al. "Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier," Phys. Plasmas, Vol. 11, No. 5, 2935-2941, 2004.
doi:10.1063/1.1690764 Google Scholar
18. Zhang, K. Q. and D. J. Li, Electromagnetic Theory for Microwaves and Optoelectronics, Springer, 1998.
19. Jackson, J. D., Classical Electrodynamics, 2nd edition, Wiley, 1975.
20. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, 1960.
21. Hung, C. L. and Y. S. Yeh, "The propagation constants of higher-order modes in coaxial waveguides with finite conductivity," Int. J. Infrared. Mill. Waves, Vol. 26, No. 1, 29-39, 2005.
doi:10.1007/s10762-004-2029-2 Google Scholar
22. Luo, J. R. and C. Q. Jiao, "Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes," Appl. Phys. Lett., Vol. 88, No. 6, 061115, 2006.
doi:10.1063/1.2172735 Google Scholar
23. Jiao, C. Q., N. Zheng, and J. R. Luo, "A comparison of the attenuation of high-order mode in coaxial waveguide due to inner and outer conductor losses," J. Infrared. Milli. Terahz. Waves, Vol. 31, No. 7, 858-865, 2010.
doi:10.1007/s10762-010-9642-z Google Scholar
24. Yan, S., B. K. Huang, W. S. Jiang, and Y. S. Jiang, "Calculation of the propagation constants in waveguides with imperfect conductor by the perturbed boundary condition method," Journal of Microwaves, Vol. 26, No. 2, 35-38, 2010 (in Chinese). Google Scholar