Vol. 22
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-29
Selective Suppression of Electromagnetic Modes in a Rectangular Waveguide by Using Distributed Wall Losses
By
Progress In Electromagnetics Research Letters, Vol. 22, 119-128, 2011
Abstract
An over-mode metal rectangular waveguide is widely used in the generation, propagation, coupling, and transition of microwaves. When applied as the beam-wave interaction circuit of some high power microwave devices, a rectangular waveguide is expected to operate at a single electromagnetic mode. To do that, unwanted modes resulted from spurious oscillations should be suppressed. In this paper, a method of selective suppression of electromagnetic modes in rectangular waveguides by loading distributed losses in some special position of waveguide inner wall is presented. By using the method, the unwanted modes can be attenuated much larger relative to the operating mode. The presented method can be used to improve the stability of rectangular waveguide beam-wave interaction circuit.
Citation
Chongqing Jiao, "Selective Suppression of Electromagnetic Modes in a Rectangular Waveguide by Using Distributed Wall Losses," Progress In Electromagnetics Research Letters, Vol. 22, 119-128, 2011.
doi:10.2528/PIERL11013102
References

1. Soekmadji, H., S. Liao, and R. J. Vernon, "Experiment and simulation on TE10 cut-off reflection phase in gentle rectangular downtapers," Progress In Electromagnetics Research Letters, Vol. 12, 79-85, 2009.
doi:10.2528/PIERL09090707

2. Rothwell, E. J., A. K. Temme, and B. R. Crowgey, "Pulse reflection from a dielectric discontinuity in a rectangular waveguide," Progress In Electromagnetics Research, Vol. 97, 11-25, 2009.
doi:10.2528/PIER09090905

3. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
doi:10.2528/PIER09060801

4. Hammou, D., E. Moldovan, and S. O. Tatu, "V-band microstrip to standard rectangular waveguide transition using a substrate interated waveguide (SIW)," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 221-230, 2009.
doi:10.1163/156939309787604319

5. Zhao, D., Y. G. Ding, Y. Wang, and C. J. Ruan, "Linear analysis of a rectangular waveguide cyclotron maser with a sheet electron beam," Phys. Plasmas, Vol. 17, No. 11, 113110, 2010.
doi:10.1063/1.3514596

6. Mineo, M., A. Di Carlo, and C. Paoloni, "Analytic design method for corrugated rectangular waveguide SWS THz vacuum tubes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2479-2494, 2010.
doi:10.1163/156939310793675745

7. Radack, D. J., K. Ramaswamy, W. W. Destler, and J. Rodgers, "A fundamental mode, high power, large-orbit gyrotron using a rectangular interaction region," J. Appl. Phys., Vol. 73, No. 12, 8139-8145, 1993.
doi:10.1063/1.353453

8. Lau, Y. Y. and L. R. Barnett, "A note on gyrotron traveling wave amplifiers using rectangular waveguides," IEEE Trans. Electron. Devices, Vol. 30, No. 8, 908-912, 1983.
doi:10.1109/T-ED.1983.21236

9. Ferendeci, A. M. and C. C. Han, "Linear analysis of an axially grooved rectangular gyrotron for harmonic operation," Int. J. Infrared Millim. Waves, Vol. 6, No. 12, 1267-1283, 1985.
doi:10.1007/BF01013214

10. Soekmadji, H., S. L. Liao, and R. J. Vernon, "Trapped mode phenomena in a weakly overmoded waveguiding structure of rectangular cross section," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 143-157, 2008.
doi:10.1163/156939308783122706

11. Kumar, N., U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha, "Design of 35 GHz gyrotron for material processing applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011.

12. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100kW cw gyrotron for plasma diagnostics: Gds-V.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
doi:10.2528/PIERB10061508

13. Malek, F., J. Lucas, and Y. Huang, "The experimental result of a low power x-band free electron maser by electron pre-bunching," Progress In Electromagnetics Research, Vol. 101, 43-62, 2010.
doi:10.2528/PIER09121604

14. Chu, K. R., H. Y. Chen, C. L. Hung, et al. "Theory and experiment of ultrahigh gain gyrotron travelingwave amplifier," IEEE Trans. Plasma. Sci., Vol. 27, No. 2, 391-404, 1999.
doi:10.1109/27.772266

15. Jiao, C. Q. and J. R. Luo, "Study on the suppression of gyro-BWO by distributed wall losses," J. Infrared. Milli. Terahz. Waves, Vol. 30, No. 9, 924-930, 2009.
doi:10.1007/s10762-009-9522-6

16. Pao, K. F., C. T. Fan, T. H. Chang, et al. "Selective suppression of high order axial modes of the gyrotron backward-wave oscillator," Physics of Plasmas, Vol. 14, No. 9, 093301, 2007.
doi:10.1063/1.2773708

17. Song, H. H., D. B. McDermott, Y. Hirata, et al. "Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier," Phys. Plasmas, Vol. 11, No. 5, 2935-2941, 2004.
doi:10.1063/1.1690764

18. Zhang, K. Q. and D. J. Li, Electromagnetic Theory for Microwaves and Optoelectronics, Springer, New York, 1998.

19. Jackson, J. D., Classical Electrodynamics, 2nd edition, Wiley, New York, 1975.

20. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York , 1960.

21. Hung, C. L. and Y. S. Yeh, "The propagation constants of higher-order modes in coaxial waveguides with finite conductivity," Int. J. Infrared. Mill. Waves, Vol. 26, No. 1, 29-39, 2005.
doi:10.1007/s10762-004-2029-2

22. Luo, J. R. and C. Q. Jiao, "Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes," Appl. Phys. Lett., Vol. 88, No. 6, 061115, 2006.
doi:10.1063/1.2172735

23. Jiao, C. Q., N. Zheng, and J. R. Luo, "A comparison of the attenuation of high-order mode in coaxial waveguide due to inner and outer conductor losses," J. Infrared. Milli. Terahz. Waves, Vol. 31, No. 7, 858-865, 2010.
doi:10.1007/s10762-010-9642-z

24. Yan, S., B. K. Huang, W. S. Jiang, and Y. S. Jiang, "Calculation of the propagation constants in waveguides with imperfect conductor by the perturbed boundary condition method," Journal of Microwaves, Vol. 26, No. 2, 35-38, 2010 (in Chinese).