Vol. 21
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-04-12
Miniaturized Multilayer Folded Substrate Integrated Waveguide Butler Matrix
By
Progress In Electromagnetics Research C, Vol. 21, 45-58, 2011
Abstract
Recently, substrate integrated waveguide (SIW) technology attracts more and more attentions in the development of millimeter-wave integrated beamforming network (BFN) depending on its inherent advantages. However, the SIW-based BFN usually has a relative large circuit size. To overcome this weakness, we propose a novel multi-folded SIW Butler matrix at the center frequency of 60 GHz. Such a structure can reduce the circuit area more than 75% compared with the conventional single-layer version. Two different full-wave simulation tools are employed to validate our design. This folded BFN offers a number of benefits, such as highly compact configuration, low couplings between adjacent paths, and wide operation bandwidth. For convenient use, the SIW ports can be converted to the microstrip line ports arranged in order through a special broad-band two-layer transition network. Such a miniaturized SIW Butler matrix presents an excellent candidate in the development of compact intelligent millimeter-wave communication system.
Citation
Yu Jian Cheng, Chuan An Zhang, and Yong Fan, "Miniaturized Multilayer Folded Substrate Integrated Waveguide Butler Matrix," Progress In Electromagnetics Research C, Vol. 21, 45-58, 2011.
doi:10.2528/PIERC11020502
References

1. Lo, Y. T. and S. W. Lee, Antenna Handbook, Van Nostrand Reinhold, New York, 1993.

2. Hirokawa, J. and M. Ando, "Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays," IEEE Trans. Antennas Propag., Vol. 48, No. 11, 1742-1745, 2000.
doi:10.1109/8.900232

3. Che, W., E. K. N. Yung, K. Wu, and X. Nie, "Design investigation on millimeter-wave ferrite phase shifter in substrate integrated waveguide ," Progress In Electromagnetics Research, Vol. 45, 263-275, 2004.
doi:10.2528/PIER03082801

4. Grigoropoulos, N. and P. R. Young, "Compact folded waveguides," 34th Eur. Microw. Conf., 973-976, Amsterdam, Netherlands, 2004.

5. Sanz Izqueirdo, B., N. Grigoropoulos, and P. R. Young, "Ultrawideband multilayer substrate integrated folded waveguides," IEEE MTT-S Digest, 610-612, 2006.

6. Grigoropoulos, N., B. Sanz Izquierdo, and P. R. Young, "Substrate integrated folded waveguide (SIFW) and filters," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 12, 829-831, 2005.
doi:10.1109/LMWC.2005.860027

7. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

8. Wang, R., L. S. Wu, and X. L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

9. Ismail, A., M. S. Razalli, M. A. Mahdi, R. S. A. Raja Abdullah, N. K. Noordin, and M. F. A. Rasid, "X-band trisection substrate-integrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 85, 133-145, 2008.
doi:10.2528/PIER08081802

10. Hong, W., K. Wu, H. J. Tang, J. X. Chen, P. Chen, Y. J. Cheng, and J. F. Xu, "SIW-liked guided wave structure and application," IEICE Trans. Electronics, Vol. 92, No. 9, 1111-1123, 2009.
doi:10.1587/transele.E92.C.1111

11. Wu, L.-S., J.-F. Mao, W. Shen, and W.-Y. Yin, "Extended doublet bandpass filters implemented with microstrip resonator and full-/half-mode substrate integrated cavities ," Progress In Electromagnetics Research, Vol. 108, 433-447, 2010.
doi:10.2528/PIER10081206

12. Bakhtafrooz, A., A. Borji, D. Busuioc, and S. Safavi-Naeini, "Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.
doi:10.2528/PIER10091706

13. Yamamoto, S., J. Hirokawa, and M. Ando, "A beam switching slot array with a 4-way Butler matrix installed in a single layer post-wall waveguide," IEEE International Symposium on Antennas and Propagation, Vol. 1, 138-141, 2002.

14. Chen, P., W. Hong, Z. Q. Kuai, and H. M. Wang, "A multibeam antenna based on substrate integrated waveguide technology for MIMO wireless communications ," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1813-1821, 2009.
doi:10.1109/TAP.2009.2019868

15. Chen, C. J. and T. H. Chu, "Design of a 60-GHz substrate integrated waveguide Butler matrix --- A systematic approach," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 7, 1724-1733, 2010.
doi:10.1109/TMTT.2010.2050097

16. Ali, A., N. J. G. Fonseca, F. Coccetti, and H. Aubert, "Design and implementation of two-layer compact wideband Butler matrices in SIW technology for Ku-band applications ," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 503-512, 2011.
doi:10.1109/TAP.2010.2093499

17. Liu, H., Microwave Network and Applications, Publishing Company of UESTC, Chengdu, 1989.

18. Cheng, Y. J., W. Hong, and K. Wu, "Millimetre-wave monopulse antenna incorporating substrate integrated waveguide phase shifter," IET Microw. Antennas Propag., Vol. 2, No. 1, 48-52, 2008.
doi:10.1049/iet-map:20070134