Department of Electrical, Computer and Energy Engineering
University of Colorado
USA
HomepageDepartment of Electrical, Computer and Energy Engineering
University of Colorado
USA
HomepageDepartment of Electrical, Computer and Energy Engineering
University of Colorado
USA
HomepagePhysical Measurement Lab
National Institute of Standards and Technology (NIST)
USA
HomepageDepartment of Electrical, Computer and Energy Engineering
University of Colorado
USA
Homepage1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
2. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magneto-dielectric spherical particles embedded in a matrix," IEEE Trans. Ant. Prop., Vol. 51, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563 Google Scholar
3. Vendik, O. G. and M. S. Gashinova, "Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix ," Proceedings 34th European Microwave Conference, 1209-1212, Amsterdam, October 12-14, 2004. Google Scholar
4. Vendik, I. B., O. G. Vendik, and M. S. Gashinova, "Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability," Pisma Zhurn. Tekh. Fiz., Vol. 32, No. 10, 30-39, 2006 (in Russian); Tech. Phys. Lett., , Vol. 32, 429-432, (in English). Google Scholar
5. Jylhä, L., I. Kolmakov, S. Maslovski, and S. Tretyakov, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, art. 043102, 2006. Google Scholar
6. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electron. Rev., Vol. 14, 179-186, 2006.
doi:10.2478/s11772-006-0023-z Google Scholar
7. Yannopapas, V., "Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres," Phys. Rev. B, Vol. 75, art. 035112, 2007. Google Scholar
8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, art. 035112, 2007. Google Scholar
8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, art. 045104, 2008. Google Scholar
9. Vendik, I. B., M. A. Odit, and D. S. Kozlov, "3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions," Metamaterials , Vol. 3, 140-147, 2009.
doi:10.1016/j.metmat.2009.09.001 Google Scholar
10. Ghadarghadr, S. and H. Mosallaei, "Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres," IEEE Trans. Ant. Prop., Vol. 57, 149-160, 2009.
doi:10.1109/TAP.2008.2009725 Google Scholar
11. Vendik, I., M. Odit, and D. Kozlov, "3D metamaterial based on a regular array of resonant dielectric inclusions," Radioengineering, Vol. 18, 111-116, 2009. Google Scholar
12. Shore, R. and A. D. Yaghjian, "Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres," IEEE Trans. Ant. Prop., Vol. 57, 3077-3091, 2009.
doi:10.1109/TAP.2009.2024495 Google Scholar
13. Vendik, I. B., O. G. Vendik, and M. A. Odit, "An isotropic metamaterial formed with ferroelectric ceramic spherical inclusions," Fiz. Tverd. Tela, Vol. 51, 1499-1503, (in Russian); Phys. Solid State, Vol. 51, 1590{1594, 2009 (in English). Google Scholar
14. Yannopapas, V. and A. Moroz, "Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges," J. Phys. Cond. Mat., Vol. 17, 3717-3734, 2005.
doi:10.1088/0953-8984/17/25/002 Google Scholar
15. Seo, B.-J., T. Ueda, T. Itoh, and H. Fetterman, "Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium," Appl. Phys. Lett., Vol. 88, art. 161122, 2006. Google Scholar
16. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies," Phys. Rev. B, Vol. 73, art. 045105, 2006. Google Scholar
17. Yannopapas, V., "Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices," Phys. Stat. Sol. (RRL), Vol. 1, 208-210, 2007.
doi:10.1002/pssr.200701191 Google Scholar
18. Khoo, I. C., A. Diaz, D.-H. Kwon, and D. H. Werner, "Liquid crystalline nonlinear optical metamaterials with low-loss tunable negative-zero-positive refractive indices," Proc. SPIE, 6587, art. 658702, 2007. Google Scholar
19. Alù, A. and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers," J. Appl. Phys., Vol. 97, art. 094310, 2005. Google Scholar
20. Mie, G., "Beiträge sur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Physik, 4th Folge, Bd. 25, 377-445, 1908; Library Translation 1873 , Royal Aircraft Establishment, London, UK, 1976 (in English); Report SAND78-6018, Sandia Laboratories, Albuquerque, NM, 1978. Google Scholar
21. Kerker, M., Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.
22. Keller, O., "Optical works of L. V. Lorenz," Progress in Optics, Vol. 43, E. Wolf, ed., Vol. 43, 195-294, Elsevier, Amsterdam, 2002. Google Scholar
23. Gans, R. and H. Happel, "Zur Optik kolloidaler Metallösungen," Ann. Physik, 4th Folge, Bd. 29, 277-300, 1909. Google Scholar
24. Stratton, J. A., "The effect of rain and fog on the propagation of very short radio waves," Proc. IRE, Vol. 18, 1064-1074, 1930.
doi:10.1109/JRPROC.1930.222101 Google Scholar
25. Kreibig, U. and M. Vollmer, "Optical Properties of Metal Clusters," 144, Springer-Verlag, Berlin, 1995. Google Scholar
26. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
27. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Chapter 10, U. S. Government Printing Office, Washington DC, 1964. Google Scholar
28. Lewin, L., "The electrical constants of a material loaded with spherical particles ," J. IEE (London), Part III, Vol. 94, 65-68, 1947. Google Scholar
29. Khizhnyak, N. A., "Artificial anisotropic dielectrics: I, II and III," Zh. Tekh. Fiz., Vol. 27, 2006-2013, 2014-2026 and 2027-2037, 1957 (in Russian); Sov. Phys. Tech. Phys., Vol. 2, 1858-1864, 1865-1876 and 1877-1886, 1957 (in English). Google Scholar
30. Aden, A. L. and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys., Vol. 22, 1242-1246, 1951.
doi:10.1063/1.1699834 Google Scholar
31. Güttler, A., "Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern und ihre Bedeutung für Probleme der interstellaren Materie und des atmosphärischen Aerosols," Ann. Physik, 6th Folge, Bd. 11, 65-98, 1952. Google Scholar
32. Shifrin, K. S., "Scattering of light from two-layer particles," Izv. Akad. Nauk SSSR Ser. Geofiz., Vol. 2, 15-21, 1952 (in Russian). Google Scholar
33. Fenn, R. W. and H. Oser, "Scattering properties of concentric soot-water spheres for visible and infrared light," Appl. Opt., Vol. 4, 1504-1509, 1965.
doi:10.1364/AO.4.001504 Google Scholar
34. Krekov, G. M. and R. F. Rakhimov, "Calculation of radiation characteristics of polydisperse concentric spheres," Izv. VUZ Fiz., Vol. 6, 30-35, 1973 (in Russian); Sov. Phys. J., Vol. 16, 762-766, 1973 (in English). Google Scholar
35. Galst'yan, E. A. and A. A. Ravaev, "Electrodynamic parameters of a medium containing two-layer spherical inclusions," Izv. VUZ Radiofiz., Vol. 30, 1243-1248, 1987 (in Russian); Radiophys. Quant. Electron., Vol. 30, 918-922, 1987 (in English). Google Scholar
36. Ponomarenko, V. I., V. N. Berzhanskii, S. I. Zhuravlev, and E. D. Pershina, "Permittivity and permeability of a synthetic dielectric with metal-plated ferrite particles at microwave frequencies," Radiotekh. Elektron., Vol. 35, 2208-2211, 1990 (in Russian); Sov. J. Commun. Technol. Electron., Vol. 36, No. 3 133-136, 1991 (in English). Google Scholar
37. Ponomarenko, V. I. and D. I. Mirovitskii, "An artificial dielectric with metallized magnetodielectric inserts," Radiotekhnika, Vol. 46, No. 6, 76{78, 1991 (in Russian); Telecommun. Radio Eng., Vol. 46, No. 5, 104-107, 1991 (in English). Google Scholar
38. Timoshenko, A. M. and V. I. Ponomarenko, "A generalized formula for the electromagnetic constants of a medium with spherical inclusions," Radiotekh. Elektron., Vol. 41, 412-415, 1996 (in Russian); J. Commun. Technol. Electron., Vol. 41, 379-382, 1996 (in English). Google Scholar
39. Scher, A. D. and E. F. Kuester, "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials, Vol. 3, 44-55, 2009.
doi:10.1016/j.metmat.2009.02.001 Google Scholar
40. Trans-Tech Incorporated, http://www.trans-techinc.com.
41. Morgan Electro Ceramics Ltd., http://www.morganelectroceramics.com. Google Scholar
42. TCI Ceramics, http://www.magneticsgroup.com. Google Scholar
43. Temex Ceramics, http://www.temex-ceramics.com.
44. Pacific Ceramics, http://www.pceramics.com.
45. Schussler, M., A. Fleckenstein, J. Freese, and R. Jakoby, "Left-handed metamaterials based on split ring resonators for microstrip applications ," 33rd European Microwave Conference, 1119-1122, 2003. Google Scholar
46. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negativeindex metamaterials with improved performance at optical frequencies ," J. Opt. Soc. Amer. B, Vol. 23, 434-438, 2006.
doi:10.1364/JOSAB.23.000434 Google Scholar
47. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express, Vol. 14, 6778-6787, 2006.
doi:10.1364/OE.14.006778 Google Scholar
48. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett., Vol. 31, 1800-1802, 2006.
doi:10.1364/OL.31.001800 Google Scholar
49. Gokkavas, M., K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B, Vol. 73, art. 193103, 2006. Google Scholar
50. He, Y., P. He, V. G. Harris, and C. Vittoria, "Role of ferrites in negative index metamaterials," IEEE Trans. Magnetics, Vol. 42, 2852-2854, 2006.
doi:10.1109/TMAG.2006.879146 Google Scholar
51. He, Y., P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Mag. Mag. Mater., Vol. 313, 187-191, 2007.
doi:10.1016/j.jmmm.2006.12.031 Google Scholar
52. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Opt. Express, Vol. 15, 11536-11541, 2007.
doi:10.1364/OE.15.011536 Google Scholar
53. Koschny, T., J. Zhoua, and C. M. Soukoulis, "Magnetic response and negative refractive index of metamaterials," Proc. SPIE, Vol. 6581, art. 658103, 2007. Google Scholar
54. Guven, K., A. O. Cakmak, M. D. Caliskan, T. F. Gundogdu, M. Kafesaki, C. M. Soukoulis, and E Ozbay, "Bilayer metamaterial: Analysis of left-handed transmission and retrieval of effective medium parameters," J. Opt. A, Vol. 9, S361-S365, 2007.
doi:10.1088/1464-4258/9/9/S13 Google Scholar
55. Kildishev, A. V., U. K. Chettiar, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, "Stochastic optimization of lowloss optical negative-index metamaterial," J. Opt. Soc. Amer. B, Vol. 24, A34-A39, 2007.
doi:10.1364/JOSAB.24.000A34 Google Scholar
56. Erentok, A., A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, "Low frequency lumped element-based negative index metamaterial," Appl. Phys. Lett., Vol. 91, art. 184104, 2007. Google Scholar
57. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, 6736-6744, 2008.
doi:10.1364/OE.16.006736 Google Scholar
58. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247 Google Scholar
59. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, 3478-3480, 2009.
doi:10.1364/OL.34.003478 Google Scholar
60. Weis, P., O. Paul, C. Imhof, R. Beigang, and M. Rahm, "Strongly birefringent metamaterials as negative index terahertz wave plates," Appl. Phys. Lett., Vol. 95, art. 171104, 2009. Google Scholar
61. Lepetit, T., E. Akmansoya, and J.-P. Ganneb, "All-dielectric metamaterial: A ferroelectric-based scheme in the microwave range ," Proc. SPIE, Vol. 7392, art. 73920H, 2009. Google Scholar
62. Andryieuski, A., C. Menzel, C. Rockstuhl, R. Malureanu, and A. V. Lavrinenko, "The split cube in a cage: Bulk negative-index material for infrared applications," J. Opt. A, Vol. 11, art. 114010, 2009. Google Scholar
63. Ding, P., E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, "Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure," Photon. Nanostruct. Fund. Appl., Vol. 7, 92-100, 2009.
doi:10.1016/j.photonics.2008.12.005 Google Scholar
64. Kanté, B., A. de Lustrac, and J.-M. Loutioz, "Low loss negative index metamaterials with one type of meta-atom," Photon. Nanostruct. Fund. Appl., Vol. 8, 112-119, 2010.
doi:10.1016/j.photonics.2009.08.001 Google Scholar
65. Alici, K. B. and E. Ozbay, "Theoretical study and experimental realization of a low-loss metamaterial operating at the millimeter-wave regime: Demonstrations of flat- and prism-shaped samples," IEEE J. Selected Topics Quant. Electron., Vol. 16, 386-393, 2010.
doi:10.1109/JSTQE.2009.2032668 Google Scholar
66. Burgos, S. P., R. de Waele, A. Polman, and H. A. Atwater, "A single-layer wide-angle negative-index metamaterial at visible frequencies," Nature Materials, Vol. 9, 407-412, 2010.
doi:10.1038/nmat2747 Google Scholar
67. Tang, J. and S. He, "A novel structure for double negative NIMs towards UV spectrum with high FOM," Opt. Express, Vol. 18, 25256-25263, 2010.
doi:10.1364/OE.18.025256 Google Scholar
68. Gong, B. and X. Zhao, "Numerical demonstration of a three-dimensional negative-index metamaterial at optical frequencies," Opt. Express, Vol. 19, 289-296, 2011.
doi:10.1364/OE.19.000289 Google Scholar
69. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, art. 067402, 2011. Google Scholar
70. Goodwin, E. T., "Recurrence relations for cross products of Bessel functions," Quart. J. Mech. Appl. Math., Vol. 2, 72-74, 1949. Google Scholar