1. Trentini, G. V., "Partially reflecting sheet array," IRE Trans. Antennas Propag., Vol. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455 Google Scholar
2. Guerin, N., S. Enoch, G. Tayeb, et al. "A metallic Fabry-Perot directive antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 220-224, 2006.
doi:10.1109/TAP.2005.861578 Google Scholar
3. Feresids, A. P., G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surface and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-214, 2005.
doi:10.1109/TAP.2004.840528 Google Scholar
4. Liu, Z. G., W. X. Zhang, D. L. Fu, et al. "Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size," Microwave & Opt. Tech. Letters, Vol. 50, No. 6, 1623-1627, 2008.
doi:10.1002/mop.23456 Google Scholar
5. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, 1984.
doi:10.1109/TAP.1984.1143433 Google Scholar
6. Yang, H. Y. and N. G. Alexopoulos, "Gain enhancement methods or printed circuit antennas through multiple superstrates," IEEE Trans. Antennas Propag., Vol. 35, No. 7, 860-863, 1987.
doi:10.1109/TAP.1987.1144186 Google Scholar
7. Jackson, D. R. and A. Oliner, "A leaky-wave analysis of the high-gain printed antenna configuration," IEEE Trans. Antennas Propag., Vol. 36, No. 7, 905-910, 1988.
doi:10.1109/8.7194 Google Scholar
8. Jackson, D. R., A. Oliner, and A. Ip, "Leaky wave propagation and radiation for a narrow-beam multiplelayer dielectric structure," IEEE Trans. Antennas Propag., Vol. 41, No. 3, 344-348, 1993.
doi:10.1109/8.233128 Google Scholar
9. Zhao, T., D. R. Jackson, J. T. Williams, and A. A. Oliner, "General formulas for 2D leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3525-3533, 2005.
doi:10.1109/TAP.2005.856315 Google Scholar
10. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011. Google Scholar
11. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Trans. Antennas Propag., Vol. 47, No. 11, 2115-2122, 1999. Google Scholar
12. Cheype, C., C. Serier, M. Thèvenot, et al. "An electromagnetic bandgap resonator antenna," IEEE Trans. Antennas Propag., Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699 Google Scholar
13. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity electromagnetic band gap resonator antenna using a frequency-selective surface superstrate," Microwave & Opt. Tech. Lett., Vol. 43, No. 6, 462-467, 2004.
doi:10.1002/mop.20502 Google Scholar
14. Weily, A. R., L. Horvath, K. P. Esselle, et al. "A planar resonator antenna based on a woodpile EBG material," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 216-223, 2005.
doi:10.1109/TAP.2004.840531 Google Scholar
15. Pirhadi, A. and M. Hakkak, "Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1682-1690, 2007.
doi:10.1109/TAP.2007.898598 Google Scholar
16. Ge, Y. and K. P. Esselle, "A method to design dual-band, high-directivity EBG resonator antennas using single-resonant, single-layer partially reflective surfaces," Progress In Electromagnetics Research C, Vol. 13, 245-257, 2010.
doi:10.2528/PIERC10020901 Google Scholar
17. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, et al. "Directivity of an antenna embedded inside a Fabry-Perot cavity analysis and design," Microwave & Opt. Tech. Lett., Vol. 48, No. 1, 12-17, 2006.
doi:10.1002/mop.21249 Google Scholar
18. Boutayeb, H., T. A. Denidni, and M. Nedil, "Bandwidth widening techniques for directive antennas based on partially reflecting surfaces," Progress In Electromagnetics Research, Vol. 74, 407-419, 2007.
doi:10.2528/PIER07060905 Google Scholar
19. Liu, Z. G., "Fabry-Perot resonator antenna," Journal of Infrared Milli Terahz Waves, Vol. 31, No. 4, 391-403, 2010. Google Scholar
20. Liu, Z. G. and R. Qiang, "A novel broadband Fabry-Perot resonator antenna with gradient index metamaterial superstrate," IEEE International Symposium on Antennas and Propag., Toronto, Canada, Jul. 11--17, 2010.
21. Liu, Z. G., "Research progress on Fabry-Perot resonator antenna," Journal of Zhejiang University SCIENCE A, Vol. 10, No. 4, 583-588, 2009.
doi:10.1631/jzus.A0820546 Google Scholar
22. Sievenpiper, D., High-impedance electromagnetic surfaces, Ph.D. Dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, 1999.
23. Sievenpiper, D., L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, "High-impedance frequency selective surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
24. Yang, F., K. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402 Google Scholar
25. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801 Google Scholar
26. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201 Google Scholar
27. Foroozesh, A., M. N. M. Kehn, and L. Shafai, "Application of artificial ground planes in dual-band orthogonally-polarized low-profile high-gain planar antenna design," Progress In Electromagnetics Research, Vol. 84, 407-436, 2008.
doi:10.2528/PIER08062804 Google Scholar
28. Liu, Z. G. and R. Qiang, "Comparative approach of Fabry-Perot resonator antenna with PMC and PEC ground plane," IEEE International Symposium on Antennas and Propag., Toronto, Canada, Jul. 11--17, 2010.
29. Burghignoli, P., G. Lovat, F. Capolino, and D. R. Jackson, "Highly polarized directive radiation from a Fabry-Perot cavity leaky-wave antenna based on a metal strip grating," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3873-3883, 2010.
doi:10.1109/TAP.2010.2078441 Google Scholar
30. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, 2001.
doi:10.1049/ip-map:20010828 Google Scholar
31. Kaganovsky, Y. and R. Shavit, "Analysis of radiation from a line source in a grounded dielectric slab covered by a metal strip grating," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 135-143, 2009.
doi:10.1109/TAP.2008.2009667 Google Scholar
32. Yousefi, L., H. Attia, and O. M. Ramahi, "Broadband experimental characterization of artificial magnetic materials based on a microstrip line method," Progress In Electromagnetics Research, Vol. 90, 1-13, 2009.
doi:10.2528/PIER08121904 Google Scholar