1. Schwan, H. P., "Dielectric polarization mechanisms: Potential importance for resonant interactions on biological systems," Resonance and Other Interaction Mechanisms of Electromagnetic Fields with Living Systems, B. Norden and C. Ramel (eds.), Oxford University Press, London, 1992. Google Scholar
2. Foster, K. R. and H. P. Schwan, "Dielectric properties of tissues: A review," Handbook of Biological E®ects of Electromagnetic Radiation, C. Polk and E. Postow (eds.), CRC Press, Boca Raton (FL), 1995. Google Scholar
3. Barnes, F. S. and C. L. Hu, "Model of some non-thermal effects of radio and microwave fields in biological membranes," IEEE Trans. Microw. Theory Tech., Vol. 25, No. 9, 742-746, 1977.
doi:10.1109/TMTT.1977.1129205 Google Scholar
4. Berkovitz, G. C. and F. S. Barnes, "The effects of nonlinear membrane capacity on the interaction of microwave and radio frequency fields with biological materials," IEEE Trans. Microw. Theory Tech., Vol. 27, No. 2, 204-207, 1979.
doi:10.1109/TMTT.1979.1129587 Google Scholar
5. Chang, S. K. W., "Electric-field-induced volume and membrane ionic permeability changes of red blood cells," EEE Trans. Biomed. Eng., Vol. 40, No. 10, 1054-1059, 1993.
doi:10.1109/10.247804 Google Scholar
6. Wachtel, H., "Firing-pattern changes and trans-membrane currents produced by ELF fields in pacemaker neuron," 18th Annual Meeting, Hanford Life Sciences Symposium, WA (USA), Richland, Oct. 16-18, 1978. Google Scholar
7. Postow, E. and M. L. Swicord, "Modulated fields and window effects," Handbook of Biological Effects of Electromagnetic Fields, C. Polk and E. Postow (eds.), CRC Press, Boca Raton, FL, 1995. Google Scholar
8. Franceschetti, G. and I. M. Pinto, "Cell membrane nonlinear response to an applied electromagnetic field," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 7, 653-658, 1984.
doi:10.1109/TMTT.1984.1132749 Google Scholar
9. Franceschetti, G. and I. M. Pinto, "Who is who in nonlinear electromagnetics," Electromagnetics, Vol. 11, 281-305, 1991.
doi:10.1080/02726349108908282 Google Scholar
10. Casaleggio, A., L. Marconi, G. Morgavi, S. Ridella, and C. Rolando, "Current flow in a cell with a non-linear membrane stimulated by an electric field," Bioelectrochemistry and Bioenergetics, Vol. 14, No. 1-3, 13-21, 1985.
doi:10.1016/0302-4598(85)85002-9 Google Scholar
11. Marconi, L., G. Morgavi, S. Ridella, and C. Rolando, "Non-linear ionic fluxes in an electrically exposed cell," Bioelectrochemistry and Bioenergetics, Vol. 16, No. 1, 89-98, 1986.
doi:10.1016/0302-4598(86)80048-4 Google Scholar
12. Bisceglia, B., G. Franceschetti, I. M. Pinto, and M. R. Scarfi, "Volterra series solution of Hodgkin-Huxley equation," Atti V RiNEM, 1-5, Saint Vincent (IT), 1984. Google Scholar
13. Kistler, W., W. Gerstner, and J. L. Van Hemmen, "Reduction of the Hodgkin Huxley equation to a single-variable threshold model," Neural Comput., Vol. 9, No. 5, 1015-1045, 1997.
doi:10.1162/neco.1997.9.5.1015 Google Scholar
14. Hodgkin, A. L. and A. F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerves," J. Physiol., Vol. 117, No. 4, 500-544, 1952. Google Scholar
15. De Vita, A., B. Bisceglia, R. P. Croce, and I. M. Pinto, "An analytic model for the response of an excitable cell with a nonlinear Hodgkin-Huxley membrane radiated by a stochastic electromagnetic field ," Proc. 2008 URSI General Assembly, paper K01p5, 2008. Google Scholar
16. Middleton, D., "Statistical physical models of urban radio noise environments --- Part I: Foundations," IEEE Transactions on Electromagn. Compatib., Vol. 14, 38-56, 1972.
doi:10.1109/TEMC.1972.303188 Google Scholar
17. Middleton, D., "Man-made noise in urban environments and transportation systems: Models and measurements," IEEE Transactions on Electromagn. Compatib., Vol. 21, 1232-1241, 1973. Google Scholar
18. Middleton, D., "Statistical-physical models of electromagnetic interference ," IEEE Transactions on Electromagn. Compatib., Vol. 19, 106-127, 1977.
doi:10.1109/TEMC.1977.303527 Google Scholar
19. De Felice, L. J., Introduction to Membrane Noise, Plenum Press, New York, 1981.
20. Guttman, R., L. Feldman, and H. Lecar, "Squid axon membrane response to white noise stimulation," Biophys. J., Vol. 14, No. 12, 941-955, 1974.
doi:10.1016/S0006-3495(74)85961-8 Google Scholar
21. Horikawa, Y., "Noise effects on spike propagation in the stochastic Hodgkin-Huxley models," J. Biological Cybernetics, Vol. 66, No. 1, 190-196, 1991. Google Scholar
22. Tanaka, H. and K. Aihara, "Analysis of the Hodgkin-Huxley equations with noise: The effects of noise on chaotic neurodynamics ," Artificial Life and Robotics, Vol. 8, No. 2, 190-196, 2004.
doi:10.1007/s10015-004-0311-y Google Scholar
23. Luchian, T., B. Bancia, C. Pavel, and G. Popa, "Biomembrane excitability studied within a wideband frequency of an interacting exogenous electric field ," Electromagnetic Biology and Medicine, Vol. 21, 287-291, 2002.
doi:10.1081/JBC-120016003 Google Scholar
24. McDonnell, M. D. and D. Abbott, "What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology," PLoS Comput. Biol., Vol. 5, No. 5, e1000348, 2009. Google Scholar
25. Collins, J., C. C. Chow, A. C. Capela, and T. T. Imhoff, "Aperiodic stochastic resonance," Physical Review E, Vol. 54, 5575-5584, 1996.
doi:10.1103/PhysRevE.54.5575 Google Scholar
26. Paffi, A., M. Liberti, F. Apollonio, M. Gianni, and G. D'Inzeo, "Modeling electromagnetic fields detectability in a HH-like neuronal system: Stochastic resonance and window behavior," Biol. Cybernetics, Vol. 94, 118-127, 2006. Google Scholar
27. Paffi, A., M. Liberti, F. Apollonio, M. Gianni, and G. D'Inzeo, "Effects of exogenous noise in a silent neuron model: Firing induction and EM signal detection," Proc. 28th IEEE-EMBS Ann. Intl. Conf., Vol. 1, 4183-4186, 2006. Google Scholar
28. Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations, , Dover, New York, 1959. Google Scholar
29. Schetzen, M., The Volterra and Wiener Theories of Nonlinear Systems, Wiley and Sons, New York, 1980.
30. Aidley, D. J., The Physiology of Excitable Cells, Cambridge University Press, UK, 2000.
31. FitzHugh, R., "Impulses and physiological states in theoretical models of nerve membrane ," Biophys. J., Vol. 1, No. 6, 445-466, 1961.
doi:10.1016/S0006-3495(61)86902-6 Google Scholar
32. Izhikevich, E. M., "Simple model of spiking neurons," IEEE Trans. Neural Netw., Vol. 14, No. 6, 1569-1572, 2003.
doi:10.1109/TNN.2003.820440 Google Scholar
33. Phillipson, P. E. and P. Schuster, "A Comparative study of the HH and Fitzhugh Nagumo models of neuron pulse propagation," Int. J. Bifurc. and Chaos, Vol. 15, 3851-3866, 2005.
doi:10.1142/S0218127405014349 Google Scholar
34. Cain, C. A., "A theoretical basis for microwave and RF field effects on excitable cellular membranes ," IEEE Trans. Microw. Theory . Google Scholar
35. See, C. H., R. A. Abd-Alhameed, and P. S. Excell, "Computation of electromagnetic field in assemblages of biological cells using a modi¯ed ¯nite di®erence time domain scheme," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1986-1994, 2007.
doi:10.1109/TMTT.2007.904064 Google Scholar
36. Fitzhugh, R. and J. Gen. Physiol., "Theoretical effects of temperature on threshold ," Theoretical effects of temperature on threshold in the Hodgkin-Huxley nerve model, Vol. 49, No. 5, 989-1005, 1966. Google Scholar
37. Bedrosian, E. and S. O. Rice, "The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and gaussian inputs," Proc. IEEE, Vol. 59, 1688-1707, 1971.
doi:10.1109/PROC.1971.8525 Google Scholar
38. Isserlis, L., "On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables," Biometrika, Vol. 12, 134-139, 1918. Google Scholar
39. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617 Google Scholar
40. Klein, L. A. and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Trans. Antennas Propagat., Vol. 25, No. 1, 104-111, 1977.
doi:10.1109/TAP.1977.1141539 Google Scholar
41. Cowalkzuk, C. C., G. Yarwood, R. Blackwell, M. Priestner, Z. Sienkiewicz, S. Bou²er, I. Ahmed, R. Abd-Alhameed, P. Excell, V. Hodzic, C. Davis, R. Gammon, and Q. Balzano, "Absence of nonlinear responses in cells and tissues exposed to RF energy at mobile phone frequencies using a doubly resonant cavity," Bioelectromagnetics, Vol. 31, 556-565, 2010.
doi:10.1002/bem.20597 Google Scholar
42. Davis, C. C. and Q. Balzano, "The brain is not a radio receiver for wireless phone signals: Human tissue does not demodulate a modulated radiofrequency carrier," Comp. Rend. Physique, Vol. 11, 585-591, 2011.
doi:10.1016/j.crhy.2010.09.002 Google Scholar
43. Nawarathna, D., J. R. Claycomb, G. Cardenas, J. Gardner, D. Warmflash, J. H. Miller, and W. R. Widger, "Harmonic generation by yeast cells in response to low-frequency electric fields," Physical Review E, Vol. 73, 0519141-0519146, 2006. Google Scholar
44. Lev, D., A. Puzenko, A. Manevitch, Z. Manevitch, L. Livshits, Y. Feldman, and A. Lewis, "D-glucose-induced second harmonic generation response in human erythrocytes," J. Phys. Chem., Vol. B113, 2513-2518, 2009. Google Scholar
45. Fishman, H. M. and H. R. Leuchtag, "Electrical noise in physics and biology," Curr. Topics Membr. Transp., Vol. 37, S. I. Helman and W. Van Driessche, Eds., Academic Press, 1990. Google Scholar
46. Weaver, J. C. and R. D. Astumian, "The response of cells to very weak electric fields. The thermal noise limit," Science, Vol. 247, No. 4941, 459-462, 1990.
doi:10.1126/science.2300806 Google Scholar
47. Weaver, J. C. and R. D. Astumian, "Estimates for ELF effects: Noise-based thresholds and the number of experimental conditions required for empirical searches," Bioelectromagnetics Suppl., Vol. 1, 119-138, 1992.
doi:10.1002/bem.2250130712 Google Scholar
48. Derksen, H. E. and A. A. Verveen, "Fluctuation of resting neural membrane potential," Science, Vol. 151, No. 3716, 1388-1389, 1966.
doi:10.1126/science.151.3716.1388 Google Scholar
49. Bevan, S., R. Kullberg, and J. Rice, "An analysis of cell membrane noise," Ann. Statist., Vol. 7, No. 2, 237-257, 1979.
doi:10.1214/aos/1176344609 Google Scholar
50. Eisenberg, R. S., M. Frank, and C. F. Stevens, "Membranes, Channels and Noise," Plenum Press, New York, 1984. Google Scholar
51. Bier, M., "How to evaluate the electric noise in a cell membrane," Acta Physica Polonica, Vol. 37, No. 5, 1409-1424, 2006. Google Scholar
52. Bukhari, M. S. H., J. H. Miller, and Z. H. Shah, "Intrinsic electromagnetic noise in living cells in vitro and its spectroscopy," J. Basic Appl. Sci., Vol. 5, 65-71, 2009. Google Scholar
53. Bukhari, M. S. H., J. H. Miller, and Z. H. Shah, "Intrinsic membrane noise in living cells and its coupling to external fields," Proc. 2nd International Conference on Computer Research and Development (ICCRD 2010), 540-544, IEEE Computer Society Press, 2010. Google Scholar