1. El Zooghby, A., "Potentials of smart antennas in CDMA systems and uplink improvements," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 172-177, Oct. 2001. Google Scholar
2. Godara, L. C., "Application of antenna arrays to mobile communications. Part II: Beam-forming and direction-of-arrival considerations," Proceedings of the IEEE, Vol. 85, No. 8, 1195-1245, Aug. 1997.
doi:10.1109/5.622504 Google Scholar
3. Cladwell, F., J. S. Kenney, and I. A. Ingram, "Design and implementation of a switched-beam smart antenna for an 802.11b wireless access point," Radio and Wireless Conference (RAWCON 2002), 55-58, 2002.
doi:10.1109/RAWCON.2002.1030116 Google Scholar
4. Polegre, A. M., G. Caille, L. Boyer, and A. Roederer, "Semi-active conformal array for ESA's GAIA mission," IEEE AP-S International Symposium, Vol. 4, 4108-4111, Jun. 2004. Google Scholar
5. Egami, S. and M. Kawai, "An adaptive multiple beam system concept," IEEE Journal on Selected Areas in Communications, Vol. 5, No. 4, 630-636, May 1987.
doi:10.1109/JSAC.1987.1146577 Google Scholar
6. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 6, 623-632, Nov. 1963.
doi:10.1109/TAP.1963.1138114 Google Scholar
7. Shelton, J. P., "Focusing characteristics of symmetrically configured bootlace lenses," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 4, 513-518, Jul. 1978.
doi:10.1109/TAP.1978.1141883 Google Scholar
8. Herd, J. S. and D. M. Pozar, "Design of a microstrip antenna array fed by a Rotman lens," IEEE AP-S International Symposium, Vol. 22, 729-732, Jun. 1984. Google Scholar
9. Hall, P. S. and S. J. Vetterlein, "Review of radio frequency beam-forming techniques for scanned and multiple beam antennas," Proceedings of the IEEE, Vol. 137, No. 5, 293-303, Oct. 1990. Google Scholar
10. Blass, J., "Multidirectional antenna, a new approach to stacked beams," IRE International Conference Record, Vol. 8, 48-50, Part 1, Mar. 1960. Google Scholar
11. Allen, J. L., "A theoretical limitation on the formation of lossless multiple beams in linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 9, No. 7, 350-352, Jul. 1961. Google Scholar
12. White, W. D., "Pattern limitations in multiple-beam antennas," IRE Transactions on Antennas and Propagation, Vol. 10, No. 4, 430-436, Jul. 1962.
doi:10.1109/TAP.1962.1137890 Google Scholar
13. Butler, J. and R. Lowe, "Beam forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 170-173, Apr. 1962. Google Scholar
14. Moody, H. J., "The systematic design of the Butler matrix," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 6, 786-788, Nov. 1964.
doi:10.1109/TAP.1964.1138319 Google Scholar
15. He, J., B.-Z. Wang, Q.-Q. He, Y.-X. Xing, and Z.-L. Yin, "Wideband X-band microstrip Butler matrix," Progress In Electromagnetics Research, Vol. 74, 131-140, 2007.
doi:10.2528/PIER07042302 Google Scholar
16. Accatino, L., F. Muoio, B. Piovano, G. Caille, and M. Mongiardo, "CAD of waveguide Butler matrices including mechanical and thermal constraints," 31st European Microwave Conference (EuMC 2001), 1-4, Sep. 2001.
doi:10.1109/EUMA.2001.338911 Google Scholar
17. Koubeissi, M., C. Decroze, T. Monediere, and B. Jecko, "A new method to design a Butler matrix with broadside beam: Application to a multibeam antenna," Microwave and Optical Technology Letters, Vol. 48, No. 1, 35-40, Jan. 2006.
doi:10.1002/mop.21253 Google Scholar
18. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Guided Wave Letters, Vol. 11, No. 2, 68-70, 2001. Google Scholar
19. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- A new concept for high-frequency electronics and optoelectronics," TELSIKS'03, Vol. 1, 3-10, Nis, Yugoslavia, Oct. 2003.
20. Ismail, A., M. S. Razalli, M. A. Mahdi, R. S. A. Raja Abdullah, N. K. Noordin, and M. F. A. Rasid, "X-band trisection substrate-integrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 85, 133-145, 2008.
doi:10.2528/PIER08081802 Google Scholar
21. Shen, W., X.-W. Sun, W.-Y. Yin, J.-F. Mao, and Q.-F. Wei, "A novel single-cavity dual mode substrate integrated waveguide filter with non resonating node," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 6, 368-370, Jun. 2009.
doi:10.1109/LMWC.2009.2020017 Google Scholar
22. Henry, M., C. E. Free, B. S. Izqueirdo, J. C. Batchelor, and P. Young, "Millimeter wave substrate integrated waveguide antennas: Design and fabrication analysis," IEEE Transactions on Advanced Packaging, Vol. 32, No. 1, 93-100, Feb. 2009.
doi:10.1109/TADVP.2008.2011284 Google Scholar
23. Cassivi, Y., D. Deslandes, and K. Wu, "Substrate integrated waveguide directional couplers," Asia-Pacific Microwave Conference, Vol. 3, 1409-1412, 2002. Google Scholar
24. Hao, Z. C., W. Hong, J. X. Chen, H. X. Zhou, and K.Wu, "Single-layer substrate integrated waveguide directional couplers," IEE Proceedings --- Microwave, Antennas and Propagation, Vol. 153, No. 5, 426-431, Oct. 2006.
doi:10.1049/ip-map:20050171 Google Scholar
25. Djerafi, T. and K. Wu, "Super-compact substrate integrated waveguide cruciform directional coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 11, 757-759, Nov. 2007.
doi:10.1109/LMWC.2007.908040 Google Scholar
26. Djerafi, T., J. Gauthier, and K. Wu, "Quasi-optical cruciform substrate integrated waveguide (SIW) coupler for millimeter-wave systems," IEEE MTT-S International Microwave Symposium Digest (MTT), 716-719, 2010. Google Scholar
27. Labay, V. A. and J. Bornemann, "E-plane directional couplers in substrate-integrated waveguide technology," Asia-Pacific Microwave Conference, 1-3, 2008.
doi:10.1109/APMC.2008.4957920 Google Scholar
28. Ali, A., H. Aubert, N. J. G. Fonseca, and F. Coccetti, "Wideband two-layer SIW coupler: Design and experiment," IET Electronics Letters, Vol. 45, No. 13, 687-689, Jun. 2009.
doi:10.1049/el.2009.0464 Google Scholar
29. Yamamoto, S., J. Hirokawa, and M. Ando, "A beam switching slot array with a 4-way Butler matrix installed in single layer post-wall waveguide," IEICE Transactions on Communications, Vol. E86-B, No. 5, 1653-1659, May 2003. Google Scholar
30. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Architecture and implementation of planar 4 × 4 Ku-band Nolen matrix using SIW technology," Asia-Pacific Microwave Conference, 16-20, Dec. 2008. Google Scholar
31. Sbarra, E., L. Marcaccioli, R. V. Gatti, and R. Sorrentino, "A novel Rotman lens in SIW technology," European Radar Conference, 236-239, 2007.
doi:10.1109/EURAD.2007.4404980 Google Scholar
32. Ali, A., N. Fonseca, F. Coccetti, and H. Aubert, "Novel two-layer broadband 4 × 4 Butler matrix in SIW technology for Ku band applications," Asia-Pacific Microwave Conference, 1-4, Dec. 2008.
doi:10.1109/APMC.2008.4958211 Google Scholar
33. European Cooperation for Space Standardization (ECSS) "Space engineering --- Multipaction design and test,", Vol. ECSS-E-20-01A, May 5, 2003. Google Scholar
34. Wolk, D., C. Vicente, H. L. Hartnagel, M. Mattes, J. R. Mosig, and D. Raboso, "An investigation of the effect of fringing fields on multipactor breakdown," Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware, 93-99, Sep. 2005. Google Scholar
35. Cheng, Y. J., K. Wu, and W. Hong, "Power handling capability of substrate integrated waveguide interconnects and related transmission line systems," Transactions on Advanced Packaging, Vol. 31, No. 4, 900-909, 2008.
doi:10.1109/TADVP.2008.927814 Google Scholar
36. Wight, J. S., W. J. Chudobiak, and V. Makios, "A microstrip and stripline crossover structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 24, No. 5, 270, 1976.
doi:10.1109/TMTT.1976.1128838 Google Scholar