Vol. 25
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-08-08
Compact and High Performance Stepped Truncated-Circular Waveguide Branching Ortho-Mode Transducer (Stcwb-Omt)
By
Progress In Electromagnetics Research Letters, Vol. 25, 135-141, 2011
Abstract
This paper reports design and development of an innovative compact Stepped Truncated-Circular Waveguide Branching Ortho-Mode Transducer (STCWB-OMT) operating at 4.5-4.8 GHz for horizontal and vertical polarizations. STCWB-OMT is derived by introducing branch waveguide via coupling slot on a stepped truncated-circular waveguide. This configuration possesses inbuilt rectangular-to-circular transition; therefore it does not require any additional square-to-circular transition to combine it with horn antenna. The challenge in the design incorporated is to obtain a mechanically compact design with low mass while compliant with the specified electrical performances; since this device is developed for space-borne application. Achieved return losses at both direct and coupled ports are >17 dB, insertion losses <0.08 dB for both polarizations, isolation is <-60 dB and cross-polarization discrimination >40 dB with the OMT length = 1.98λ atcenter frequency and weight = 250 gm The agreement between measured and computed results provides a validation of the proposed OMT configuration.
Citation
Ramesh Gupta, Khagindra K. Sood, and Rajeev Jyoti, "Compact and High Performance Stepped Truncated-Circular Waveguide Branching Ortho-Mode Transducer (Stcwb-Omt)," Progress In Electromagnetics Research Letters, Vol. 25, 135-141, 2011.
doi:10.2528/PIERL11062108
References

1. Adekola, S. A., A. I. Mowete, and A. A. Ayorinde, "Performance characteristics of a dual-sense helical-beam antenna," PIERS Proceedings, 569-572, Marrakesh, Morocco, March 20-23, 2011.

2. Tribak , A., A. Mediavilla, A. Casanueva, and K. Cepero, "A dual linear polarization feed antenna system for satellite communications," PIERS Proceedings, 1324-1328, Marrakesh, Morocco, March 20-23, 2011.

3. San-Blas , A. A., F. J. Perez, J. Gil, F. Mira, V. E. Boria, and B. Gimeno, "Full-wave analysis and design of broadband turnstile junctions," Progress In Electromagnetics Research Letters, Vol. 24, 149-158, 2011.

4. Uher, J., J. Bornemann, and U. Rosenberg, Waveguide Components for Antenna Feed Systems: Theory and CAD, Artech House , Norwood, MA, 1993.

5. Kisuregawa , T., Advanced Technology in Satellite Communication Antennas: Electrical and Mechanical Design, Artech House, Norwood, MA, 1990.

6. Bφifot, A. M., E. Lier, and T. Schaug-Pettersen, "Simple and broadband ortho-mode transducers," IEE Proceedings, Pt.-H, Vol. 157, No. 6, 396-400, 1990.

7. Bathker, D. A., "A stepped mode transducer using homogeneous waveguides," IEEE Trans. Microwave Theory and Techniques, Vol. 15, No. 2, 128-130, 1967.
doi:10.1109/TMTT.1967.1126392

8. Stuchly, S., "Wide-band rectangular to circular waveguide mode and impedance transformer," IEEE Trans. Microwave Theory and Techniques, Vol. 13, No. 5, 379-380, 1965.
doi:10.1109/TMTT.1965.1126003

9. Tomiyasu , K., "Four-port scattering matrix for dual-polarized wave transmission and reflection network," IEEE Trans. Microwave Theory and Techniques, Vol. 45, No. 3, 354-358, 1997.
doi:10.1109/22.563333