Vol. 34
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-08-20
Theory of Gain Enhancement of UC-PBG Antenna Structures Without Invoking Maxwell's Equations: an Array Signal Processing Approach
By
Progress In Electromagnetics Research B, Vol. 34, 15-30, 2011
Abstract
In this paper, a novel and computationally efficient algorithm which combines Array Signal Processing (ASP) approach with Fourier Optics (FO) is developed in the realm of gain enhancement achieved by placing Uniplanar Compact-Photonic Band Gap (UC-PBG) structures on top of microstrip antennas. The proposed scheme applies FO to the well-known sampling theorem borrowed from Digital Signal Processing (DSP) analysis in the framework of ASP approach which we refer to as the FDA algorithm. The FDA algorithm is suitable for lossless UC-PBG structures with 1-D, 2-D and 3-D lattice of canonical geometrical apertures, such as circular, octagonal, hexagonal, and square. In order to validate the proposed approach, two different UC-PBG structures of octagonal and circular apertures are considered at 2.6 GHz. The UC-PBG structures under consideration consist of two layers positioned above a microstrip antenna; each layer is an array of 9×9 apertures separated by half of the focal length distance of the lens in the near-field of the microstrip antenna. The performance of the microstrip antenna with and without the UC-PBG is reported using numerical simulations performed using CST Microwave Studio (CST MWS) based on the Finite Integration Technique (FIT). The radiation patterns and directivity of the microstrip antenna based on UC-PBG structures are evaluated using the proposed FDA algorithm and validated against numerical results obtained from CST MWS where an excellent agreement is found between the FDA algorithm and the 3-D full wave simulations. The UC-PBG structure of octagonal apertures provides a remarkable enhancement in the bore-sight gain of about 7.8 dBi at 2.6 GHz with respect to that obtained from the conventional microstrip antenna, while the circular apertures provide gain enhancement in excess of 10 dBi above the gain of the same microstrip antenna.
Citation
Taha Ahmed Elwi, Hussain M. Al-Rizzo, Nidhal Bouaynaya, Maytham M. Hammood, and Yahiea Al-Naiemy, "Theory of Gain Enhancement of UC-PBG Antenna Structures Without Invoking Maxwell's Equations: an Array Signal Processing Approach," Progress In Electromagnetics Research B, Vol. 34, 15-30, 2011.
doi:10.2528/PIERB11062709
References

1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.

2. Zhan, L. and Y. Rahmat Samii, "PBG, PMC, and PEC ground planes: A case study dipole antennas," International Symposium on Antennas and Propagation, 674-677, Salt Lake City, UT, 2000.

3. Zhao, Y. and C. G. Parini, "A 30 GHz dual linear polarized microstrip antenna array and its characteristics on PBG substrate," 31st European Microwave Conf., Vol. 2, 29-32, London, 2001.

4. Caloz, C., C. C. Chang, and T. Itoh, "A novel anisotropic uniplanar compact photonic band-gap (UC-PBG ) ground plane," 31st European Microwave Conf., Vol. 2, 185-187, London, 2001.

5. Kuo, Y. L., T. W. Chiou, and K. L. Wong, "A dual-band rectangular microstrip antenna using a novel photonic band gap ground plane of unequal orthogonal periods," Microw. Opt. Techn. Lett., Vol. 30, 280-283, 2001.
doi:10.1002/mop.1290

6. Sauleau, R., P. Coquet, T. Matsui, and J.-P. Daniel, "A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors," IEEE Trans. Ant. Prop., Vol. 51, 3171-3175, 2003.
doi:10.1109/TAP.2003.818795

7. Hao, Y., A. H. Alomainy, and C. G. Parini, "Antenna-beam shaping from offset defects in UC-EBG cavities," Microw. Opt. Techn. Lett., Vol. 43, 108-112, 2004.
doi:10.1002/mop.20391

8. Weng, Z., N. Wang, and Y. Jiao, "Study on high gain patch antenna with metamaterial cover," ISAPE'06, 7th International Symposium on Antennas, Propagation & EM Theory, Vol. 34, No. 3, 1-2, Apr. 2007.

9. Elwi, T. A., H. M. Al-Rizzo, D. G. Rucker, and F. Song, "Numerical simulation of a UC-PBG lens for gain enhancement of microstrip antennas," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 6, 676-684, Nov. 2009.
doi:10.1002/mmce.20391

10. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, 2nd Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, May 2007.

11. Goodman, J. W., Introduction to Fourier Optics, 3rd Ed., McGraw-Hill Companies, Inc., St. Louis San Francisco, New York, Aug. 2005.

12. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, Apr. 2005.

13. CST Microwave Studio. 10th version, Available: http://www.cst.com., 2010.