Vol. 33
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-08-18
Genetic Algorithm and Finite Element Analysis for Optimum Design of Slotted Torus Axial-Flux Permanent-Magnet Brushless DC Motor
By
Progress In Electromagnetics Research B, Vol. 33, 383-407, 2011
Abstract
This paper presents an inside-out axial-flux permanent-magnet brushless DC motor optimized by Finite Element Analysis (FEA) and Genetic Algorithm (GA) that uses sizing equation. The double-sided slotted-stator designed TORUS motor has sinusoidal back EMF waveform and maximum power density. The GA obtained the dimensions that gave the motor its highest power density. Field analysis of the dimensions was then put through FEA, to obtain and re-optimize the motor's characteristics. Possible design parameters were investigated via use of Commercial Vector Field Opera 14.0 software used in three-dimensional FEA simulation and of MATLAB 2010a in GA programming. Techniques such as modifying winding configuration and skewing the permanent magnets were explored to achieve the most-sinusoidal back-EMF waveform and minimized cogging torque. The desired technical specifications were matched by simulation results of the 3D FEA and the GA. The FEA and the GA simulation results comparison of the flux density in different parts of the designed motor at no-load condition agreed well.
Citation
Amin Mahmoudi, Nasrudin Abd Rahim, and Hew Wooi Ping, "Genetic Algorithm and Finite Element Analysis for Optimum Design of Slotted Torus Axial-Flux Permanent-Magnet Brushless DC Motor," Progress In Electromagnetics Research B, Vol. 33, 383-407, 2011.
doi:10.2528/PIERB11070204
References

1. Hadef, M., M. R. Mekideche, A. Djerdir, A. Miraoui, and , "An inverse problem approach for parameter estimation of interior permanent magnet synchronous motor," Progress In Electromagnetics Research B, Vol. 31, 15-28, 2011.        Google Scholar

2. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303        Google Scholar

3. Cho, C. P. and B. K. Fussel, "Detent torque and axial force effect in a dual air-gap axial-field brushless motor IEEE Transaction on Magnetics,", Vol. 6, 2416-2418, November 1993.        Google Scholar

4. Mendrela, E. A., R. Beniak, and R. Wrobel, "Influence of stator structure on electromechanical parameters of torus-type brushless DC motor," IEEE Transaction on Energy Conversion, Vol. 18, No. 2, 231-237, June 2003.
doi:10.1109/TEC.2002.801733        Google Scholar

5. Lukaniszyn, M., M. Jagiela, and R. Wrobel, "A disc-type motor with co-axial flux in the stator-influence of magnetic circuit parameters on the torque," Electrical Engineering, Vol. 84, No. 2, 61-71, 2002.
doi:10.1007/s00202-001-0107-1        Google Scholar

6. Chalmers, B. J. and E. Spooner, "An axial-flux permanent-magnet generator for a gearless wind energy system," IEEE Transaction on Energy Conversion, Vol. 14, 251-257, June 1999.
doi:10.1109/60.766991        Google Scholar

7. Barakat, G., T. El-Meslouhi, and B. Dakyo, "Analysis of the cogging torque behavior of a two-phase axial flux permanent magnet synchronous machine," IEEE Transaction on Magnetics, Vol. 37, 2803-2805, July 2001.        Google Scholar

8. Liu, C. T. and S. C. Lee, "Magnetic field modeling and optimal operational control of a single-side axial-flux permanent magnet motor with center poles," Journal of Magnetism and Magnetic Materials, Vol. 304, No. 1, 454-456, September 2006.
doi:10.1016/j.jmmm.2006.02.065        Google Scholar

9. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Axial-flux permanent-magnet machine modeling, design, simulation, and analysis," Scientific Research and Essay (SRE), Vol. 6, No. 12, 2525-2549, June 2011.        Google Scholar

10. Barakat, G., T. El-meslouhi, and B. Dakyo, "Analysis of the cogging torque behavior of a two-phase axial flux permanent magnet synchronous machine," IEEE Transaction on Magnetics, Vol. 37, No. 4, 2803-2805, July 2001.
doi:10.1109/20.951312        Google Scholar

11. Caricchi, F., F. Crescimbini, and O. Honrati, "Modular axial-flux permanent-magnet motor for ship propulsion drives," IEEE Transaction on Energy Conversion, Vol. 14, No. 3, 673-679, September 1999.
doi:10.1109/60.790934        Google Scholar

12. Ficheux, R. L., F. Caricchi, F. Crescimbini, and O. Honorati, "Axial-flux permanent-magnet motor for direct-drive elevator systems without machine room," IEEE Transaction on Industry Applications, Vol. 37, No. 6, 1693-1701, November-December 2001.
doi:10.1109/28.968180        Google Scholar

13. Gieras, J. F., R. J. Wang, and M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, Springer Verla, 2008.

14. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "TORUS and AFIR axial-flux permanent-magnet machines: a comparison via finite element analysis," International Review on Modelling and Simulations, Vol. 4, No. 2, 624-631, April 2011.        Google Scholar

15. Liu, C. T., S. C. Lin, and T. S. Chiang, "On the analytical flux distribution modeling of an axial-flux surface-mounted permanent magnet motor for control applications original research," Journal of Magnetism and Magnetic Materials, Vol. 282, 346-350, November 2004.        Google Scholar

16. Gholamian, S. A., Optimum design and manufacturing of axial flux permanent magnet motor for electric vehicle application, Ph.D. Dissertation, K. N. Toosi Univ. Technology, Tehran, Iran, January 2008.

17. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A general approach to sizing and power density equations for comparison of electrical machines," IEEE Transaction on Industry Applications, Vol. 34, No. 1, 92-97, January-February 1998.
doi:10.1109/28.658727        Google Scholar

18. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A comparison of power density for axial flux machines based on the general purpose sizing equation," IEEE Transaction on Energy Conversion, Vol. 14, No. 2, 185-192, January 1999.
doi:10.1109/60.766982        Google Scholar

19. Aydin, M., S. Huang, and T. A. Lipo, "Design and 3D electromagnetic field analysis of non-slotted and slotted TORUS type axial flux surface mounted permanent magnet disc machines," IEEE International Electric Machines and Drives Conference.

20. Aydin, M., S. Huang, and T. A. Lipo, "Optimum design and 3D finite element analysis of nonslotted and slotted internal rotor type axial flux PM disc machines," IEEE Power Engineering Society Summer Meeting, July 15-19, 2001.        Google Scholar

21. Rao, S. S., Optimization: Theory and Application, Wiley Eastern Limited, New Delhi, 1985.

22. Rao, S. S., Engineering Optimization: Theory and Practice, Wiley, 1996.

23. Pemha, E. and E. Ngo Nyobe, "Genetic algorithm approach and experimental confirmation of a laser-based diagnostic technique for the local thermal turbulence in a hot wind tunnel jet," Progress In Electromagnetics Research B, Vol. 28, 325-350, 2011.        Google Scholar

24. Gen, M. and R. Cheng, Genetic Algorithms and Engineering Optimization, Wiley, New York, 2000.

25. Rahim, N. A., W. P. Hew, and A. Mahmoudi, "Axial-flux permanent-magnet brushless dc traction motor for direct drive of electric vehicle ," International Review of Electrical Engineering, Vol. 6, No. 2, 760-769, April 2011.        Google Scholar

26. Tokan, F. and F. Gunes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
doi:10.2528/PIERB09072309        Google Scholar

27. Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, January 1989.

28. Conn, A. R., N. I. M. Gould, L. Toint, and Ph., "A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds," SIAM Journal on Numerical Analysis, Vol. 28, No. 2, 545-572, April 1991.
doi:10.1137/0728030        Google Scholar

29. Conn, A. R., N. I. M. Gould, and Ph. L. Toint, "A globally convergent augmented lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds," Mathematics of Computation, Vol. 66, No. 217, 261-288, January 1997.
doi:10.1090/S0025-5718-97-00777-1        Google Scholar

30. Üler, G. F., O. A. Mohammed, and C. S. Koh, "Utilizing, genetic algorithms for the optimal design of electromagnetic devices," IEEE Transactions on Magnetics, Vol. 30, No. 6, November 1994.        Google Scholar

31. Üer, G. F., O. A. Mohammed, and C. S. Koh, "Design optimization of electrical machines using genetic algorithms," IEEE Transactions on Magnetics, Vol. 31, No. 3, May 1995.        Google Scholar

32. Wurtz, F., M. Richomme, J. Bigeon, and J. C. Sabonnadiere, "A few results for using genetic algorithms in the design of electrical machines," IEEE Transactions on Magnetics, Vol. 33, No. 2, May 1997.
doi:10.1109/20.582656        Google Scholar

33. Mirzaeian, B., M. Moallem, V. Tahani, and C. Lucas, "Multiobjective optimization method based on a genetic algorithm for switched reluctance motor design," IEEE Transactions on Magnetics, Vol. 30, No. 3, May 2002.        Google Scholar

34. MATLAB 2010a, User Guide, MathWorks Inc., 2010, http://www.mathworks.com.        Google Scholar

35. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Analytical method for determining axial-flux permanent-magnet machine sensitivity to design variables," International Review of Electrical Engineering, Vol. 5, No. 5, 2039-2048, September-October 2010.        Google Scholar

36. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004        Google Scholar

37. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
doi:10.2528/PIER10041406        Google Scholar

38. Torkaman, H. and E. Afjei, "Comparison of two types of dual ayer generator in field assisted mode utilizing 3D-FEM and experimental verification," Progress In Electromagnetics Research B, Vol. 23, 293-309, 2010.
doi:10.2528/PIERB10060808        Google Scholar

39. Torkaman, H. and E. Afjei, "Magnetio static field analysis regarding the effects of dynamic eccentricity in switched reluctance motor," Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009.
doi:10.2528/PIERM09060205        Google Scholar

40. Opera Version 14.0 User Guide, Vector Fields, 2011, http://www.cobham.com.        Google Scholar

41. Wang, R. J., M. J. Kamper, and K. V. D. Westhuizen, "Optimal design of a coreless stator axial flux permanent magnet generator," IEEE Transaction on Magnetics, Vol. 41, No. 1, 55-64, January 2005.
doi:10.1109/TMAG.2004.840183        Google Scholar

42. Saari, J., Thermal analysis of high-speed induction machines, Ph.D. Dissertation, Helsinki Univ. Technology, Helsinki, Finland, January 1998.

43. Hanselman, D. C., Brushless Permanent Magnet Motor Design, McGraw-Hill, New York, 1994.