Vol. 36
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-02
Effective Material Property Extraction of a Metamaterial by Taking Boundary Effects into Account at TE/TM Polarized Incidence
By
Progress In Electromagnetics Research B, Vol. 36, 1-33, 2012
Abstract
In this paper, we present the extraction for effective material parameters for a metamaterial from TE or TM waveguide measurements with generalized sheet transition conditions (GSTCs) used to provide electric and magnetic surface susceptibilities that approximate boundary effects between the metamaterial and air. The retrieval algorithm determines the effective material properties via scattering data obtained from the metamaterial in a waveguide. The effective refractive index is expressed as a function of S-parameters for two samples of different length. The effective wave impedance is given in terms of $S$-parameters and the refractive index, assuming that GSTCs account for the boundary effects. The effective permittivity and permeability can then be determined through the refractive index and wave impedance. By use of S-parameters generated by commercial three-dimensional (3-D) full-wave simulation software our present equations are tested for two cases of metamaterials: magneto-dielectric (εrr) and dielectric (TiO2) particles. We also conduct S-parameter measurements on dielectric cubes with an S-band (WR-284) waveguide to compute the effective material properties. Furthermore, our results are compared to those derived from another retrieval method used in the literature, which does not account for boundary effects.
Citation
Sung Kim, Edward F. Kuester, Christopher L. Holloway, Aaron D. Scher, and James R. Baker-Jarvis, "Effective Material Property Extraction of a Metamaterial by Taking Boundary Effects into Account at TE/TM Polarized Incidence," Progress In Electromagnetics Research B, Vol. 36, 1-33, 2012.
doi:10.2528/PIERB11072910
References

1. Pendry, , J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Cond. Mat., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007        Google Scholar

2. Pendry, , J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenom-ena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999..
doi:10.1109/22.798002        Google Scholar

3. Saadoun, , M. M. I., N. Engheta, and , "A reciprocal phase shifter using novel pseudochiral or Omega medium," Microwave Opt. Tech. Lett., Vol. 5, No. 4, 184-188, 1992.
doi:10.1002/mop.4650050412        Google Scholar

4. Lindell, , I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media,, Artech House, 1994.

5. Holloway, , C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563        Google Scholar

6. Kim, J., A. Gopinath, and , "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126        Google Scholar

7. Zhao, , Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," hys. Rev. Lett.,, Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402        Google Scholar

8. Wang, J., S. Qu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Wide-angle polarization-independent planar left-handed metamaterials based on dielectric resonators ," Progress In Electromagnetics Research B, Vol. 12, 243-258, 2009.
doi:10.2528/PIERB08121609        Google Scholar

9. Pendry, , J. B., , "Negative refraction makes a perfect lens," Phys Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966        Google Scholar

10. Grbic, A., G. V. Eleftheriades, and , "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett., , Vol. 92, , 117403, , 2004.
doi:10.1103/PhysRevLett.92.117403        Google Scholar

11. Yang, , F., Y. Rahmat-Samii, and , Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

12. Landy, , N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett.,, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402        Google Scholar

13. Li, , Y., Y. Xie, H. Zhang, Y. Liu, Q. Wen, and W. Ling, "The strong non-reciprocity of metamaterial absorber: Characteristic interpretation and modeling," J. Phys. D. Appl. Phys., Vol. 42, 095408, , 2009.
doi:10.1088/0022-3727/42/9/095408        Google Scholar

14. Wang, , J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERL09012003        Google Scholar

15. Engheta, , N., , "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless Propag. Lett., Vol. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576        Google Scholar

16. Ozgun, O., M. Kuzuoglu, and , "Utilization of anisotropic metama-terial layers in waveguide miniaturization and transitions," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 11, 754-756, 2007.
doi:10.1109/LMWC.2007.908039        Google Scholar

17. Meng, F. Y., Q. Wu, and J. H. Fu, "Miniaturized rectangular cavity resonator based on anisotropic metamaterials bilayer," Microwave Opt. Tech. Lett.,, Vol. 50, No. 8, 2016-2020, 2008.
doi:10.1002/mop.23556        Google Scholar

18. Holloway, , C. L., D. C. Love, E. F. Kuester, A. Salandrino, and N. Engheta, "Sub-wavelength resonators: On the use of metafilms to overcome the lambda/2 size limit," IET Microw. Antennas Propag., Vol. 2, No. 2, 120-129, 2008.
doi:10.1049/iet-map:20060309        Google Scholar

19. Alµu, , A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag.,, Vol. 55, No. 1, 13-25, 2007.
doi:10.1109/TAP.2006.888401        Google Scholar

20. Bilotti, , F., A. Alu, and L. Vegni, "Design of miniaturized metamaterial patch antennas with mu-negative loading," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1640-1647, 2008.
doi:10.1109/TAP.2008.923307        Google Scholar

21. Smith, , D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coe±cients," Phys. Rev. B, Vol. 65, , 195104, 2002.
doi:10.1103/PhysRevB.65.195104        Google Scholar

22. Smith, , D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, , Vol. 71, , 036617, , 2005.
doi:10.1103/PhysRevE.71.036617        Google Scholar

23. Chen, , H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optics Express,, Vol. 14, No. 26, 12944-12949, 2006.
doi:10.1364/OE.14.012944        Google Scholar

24. Carbonell, , J., L. J. Rogla, V. E. Boria, and D. Lippens, "Design and experimental verification of backward-wave propagation in periodic waveguide structures," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1527-1533, 2006.
doi:10.1109/TMTT.2006.871364        Google Scholar

25. Menzel, , C., C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving e®ective parameters for metamaterials at oblique incidence," Phys. Rev. B, Vol. 77, 195328, , 2008..
doi:10.1103/PhysRevB.77.195328        Google Scholar

26. Cohn, , S. B. and ., "Microwave measurements on metallic delay media," Proc. IRE,, Vol. 41, , 1177-1183, , 1953..
doi:10.1109/JRPROC.1953.274454        Google Scholar

27. Brown, J. a, W. Jackson, and , "The properties of artificial dielectrics at centimetre wavelengths," Proc. IEE,, Vol. 102B, 11-16, 1955.        Google Scholar

28. Scher, , A. D., E. F. Kuester, and , "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials,, Vol. 3, No. 1, 44-55, 2009..
doi:10.1016/j.metmat.2009.02.001        Google Scholar

29. Pekar, , S. I., , "The theory of electromagnetic waves in a crystal in which excitations are produced," Sov. Phys. JETP, Vol. 6, , 785-796, , 1958.        Google Scholar

30. Silveirinha, , M. G., C. A. Fernandes, and J. R. Costa, "Additional boundary conditions for a wire medium connected to a metallic surface," New J. Phys., , Vol. 10, , 053011, , 2008.
doi:10.1088/1367-2630/10/5/053011        Google Scholar

31. Silveirinha, M. G., , "Additional boundary conditions for noncon-nected wire media," New J. Phys., , Vol. 11, , 113016, , 2009.
doi:10.1088/1367-2630/11/11/113016        Google Scholar

32. Simovski, , C. R. and S. A. Tretyakov, "Local constitutive pa-rameters of metamaterials from an effective-medium perspective," Phys. Rev. B, Vol. 75, 195111, 2007.
doi:10.1103/PhysRevB.75.195111        Google Scholar

33. Simovski, , C. R., , "Material parameters of metamaterials (a review)," Opt. Spectr., Vol. 107, No. 5, 766-793, 2009..
doi:10.1134/S0030400X09110101        Google Scholar

34. Vinogradov, , A. P., A. I. Ignatov, A. M. Merzlikin, S. A. Tretyakov, and C. R. Simovski, "Additional effective medium parameters for composite materials (excess surface currents)," Opt. Express, Vol. 19, No. 7, 6699-6704, 2011.
doi:10.1364/OE.19.006699        Google Scholar

35. Kim, , S., E. F. Kuester, C. L. Holloway, A. D. Aaron, and J. Baker-Jarvis, "Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2226-2240, 2011.
doi:10.1109/TAP.2011.2143679        Google Scholar

36. Marks, , R. B., D. F. Williams, and , "A general waveguide circuit theory," J. Res. Nat. Inst. Stand. Technol., Vol. 97, No. 5, 553-562, 1992.        Google Scholar

37. Huynen, , I., C. Steukers, and F. Duhamel, "A wideband line-line dielectric method for liquids, soils, and planar substrates," IEEE Trans. Instrum. Meas., , Vol. 50, No. 5, 1343{-1348, 2001.
doi:10.1109/19.963208        Google Scholar

38. Carchon, , G., B. Nauwelaers, and , "Accurate transmission line characterisation on high and low-resistivity substrates," Proc. IEE Microw. Antennas Propag., Vol. 148, No. 5, 285-290, , 2001.
doi:10.1049/ip-map:20010675        Google Scholar

39. Narita, , K., T. Kushta, and , "An accurate experimental method for characterizing transmission lines embedded in multilayer printed circuit boards," IEEE Trans. Adv. Packag.,, Vol. 29, No. 1, 114-121, 2006.
doi:10.1109/TADVP.2005.849543        Google Scholar

40. Kuester, , E. F., M. A. Mohamed, M. Picket-May, and C. L. Hol-loway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2641-2651, 2003.
doi:10.1109/TAP.2003.817560        Google Scholar

41. Scher, , A. D., E. F. Kuester, and , "Boundary effects in the electromagnetic response of a metamaterial in the case of normal incidences," Progress In Electromagnetics Research B, Vol. 14, 341-381, 2009.
doi:10.2528/PIERB09021107        Google Scholar

42. Vernon, , R. J. and S. R. Seshadri, "Reflection coefficient and reflected power on a lossy transmission line," Proc. IEEE,, Vol. 57, 101-102, 1969.
doi:10.1109/PROC.1969.6893        Google Scholar

43. Mohamed, , M. A., E. F. Kuester, M. Piket-May, and C. L. Hol-loway, "The ¯eld of an electric dipole and the polarizability of a conducting object embedded in the interface between dielectric materials," Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009.
doi:10.2528/PIERB09050408        Google Scholar

44. Holloway, , C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a meta¯lm: With an application to a controllable surface composed of resonant particles," IEEE Trans. Electromag. Compat., Vol. 47, No. 4, 853-865, 2005.
doi:10.1109/TEMC.2005.853719        Google Scholar

45. Scher, , A. D., , "Boundary effects in the electromagnetic response of a metamaterial using the point-dipole interaction model," Ph.D. Thesis, University of Colorado at Boulder, , 2008..        Google Scholar

46. Nicolson, , A. M., G. F. Ross, and , "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas.,, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932        Google Scholar

47. Wier, , W. B., , "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382        Google Scholar

48. Baker-Jarvis, , J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with transmis-sion/reflection method," IEEE Trans. Microw. Theory Tech.,, Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336        Google Scholar

49. Baker-Jarvis, , J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," Nat. Inst. Stand. Technol. Tech. Note, Vol. 1355-R, 1993.        Google Scholar