Vol. 36
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-09
Design of a Fully Digital Controlled Reconfigurable Switched Beam Concentric Ring Array Antenna Using Firefly and Particle Swarm Optimization Algorithm
By
Progress In Electromagnetics Research B, Vol. 36, 113-131, 2012
Abstract
Reconfigurable antenna arrays are often capable of radiating multiple patterns by modifying the excitation phases of the elements. In this paper a method based on Firefly Algorithm (FA) has been proposed to obtain dual radiation pattern from a concentric ring array of isotropic elements, by finding out two different combinations of states for the switches, which are assumed to be connected with the rings of the array, along with optimum set of 4-bit radial amplitude and 5-bit radial phase distributions of the array elements for the specific switch combinations. The optimum excitations of the array elements in terms of discrete amplitudes and discrete phase, and the different switch combinations for the specific excitations are computed using Firefly Algorithm. To illustrate the effectiveness of Firefly Algorithm, the two beam pairs have been computed by the same procedure from the same array, using Particle Swarm Optimization (PSO) algorithm, without changing their design criteria. Results clearly show the superiority of the Firefly Algorithm over Particle Swarm Optimization to handle the proposed problem.
Citation
Anirban Chatterjee, Gautam Mahanti, and Arindam Chatterjee, "Design of a Fully Digital Controlled Reconfigurable Switched Beam Concentric Ring Array Antenna Using Firefly and Particle Swarm Optimization Algorithm," Progress In Electromagnetics Research B, Vol. 36, 113-131, 2012.
doi:10.2528/PIERB11083005
References

1. Bucci, , O. M., G. Mazzarella, and G. Panariello, , "Reconfigurable arrays by phase-only control," IEEE Trans. on Antennas and Propagation, Vol. 39, No. 7, 919-925, Jul. 1991.
doi:10.1109/8.86910        Google Scholar

2. Diaz, , X., J. A. Rodriguez, F. Ares, and E. Moreno, , "Design of phase-differentiated multiple-pattern antenna arrays," Microwave Opt. Technol. Lett., Vol. 26, 52-53, Jul. 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<52::AID-MOP16>3.0.CO;2-0        Google Scholar

3. Durr, , M., A. Trastoy, and F. Ares, , "Multiple-pattern linear antenna arrays with single prefixed amplitude distributions: Modi¯ed Woodward-Lawson synthesis," Electronics Letters,, Vol. 36, No. 16, 1345-1346, Aug. 2000.
doi:10.1049/el:20000980        Google Scholar

4. Gies, D. and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase-differentiated array design," Microwave Opt. Technol. Lett.,, 168-175, Aug. 2003.
doi:10.1002/mop.11005        Google Scholar

5. Mahanti, , G. K., A. Chakraborty, and S. Das, "Design of phase-di®erentiated reconfigurable array antennas with minimum dynamic range ratio," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 262-264, Dec. 2006.
doi:10.1109/LAWP.2006.875899        Google Scholar

6. Mahanti, , G. K., A. Chakraborty, and S. Das, , "Design of fully digital controlled reconfigrable array antennas with fixed Applications, ,", Vol. 21, No. 1, , 97-106, 2007.        Google Scholar

7. Vaitheeswaran, , S. M., , "Dual beam synthesis using element position perturbations and the g3-ga algorithm," Progress In Electromagnetics Research, Vol. 87, 43-61, 2008.
doi:10.2528/PIER08091601        Google Scholar

8. Chatterjee, , A., G. K. Mahanti, and P. R. S. Mahapatra, , "Design of fully digital controlled reconfigurable dual-beam concentric ring array antenna using gravitational search algorithm," Progress In Electromagnetics Research C,, Vol. 18, 59-72, 2011.        Google Scholar

9. Chatterjee, , A., G. K. Mahanti, and P. R. S. Mahapatra, , "Design of phase-di®erentiated dual-beam concentric ring array antenna using differential evolution algorithm," Communications and Signal Processing, , 280-283, , 2011.        Google Scholar

10. Chatterjee, , A., G. K. Mahanti, and P. R. S. Mahapatra, "Generation of phase-only pencil-beam-pair from concentric ring array antenna using gravitational search algorithm," Proc. Int. Conf. on Communications and Signal Processing, 384-388, 2011.
doi:10.1109/ICCSP.2011.5739343        Google Scholar

11. Li, , X., M. Yin, and , "Design of a reconfigurable antenna array with discrete phase shifters using differential evolution algorithm," Progress In Electromagnetics Research B,, Vol. 31, 29-43, 2011.        Google Scholar

12. Biller, , L., G. Friedman, and , "Optimization of radiation patterns for an array of concentric ring sources," IEEE Trans. on Audio Electroacoustic, , Vol. 21, No. 1, , 57-61, Feb. 1973..
doi:10.1109/TAU.1973.1162432        Google Scholar

13. Kumar, , B. P., G. R. Branner, and , "Design of low sidelobe circular ring array by element radius optimization, ," Proc. IEEE Antennas and Propagation Int. Symp., , 2032-2035, , Aug. 1999.        Google Scholar

14. Li, , Y., K. C. Ho, and C. Kwan, , "Beampattern synthesis for concentric circular ring array using MMSE design," Proc. Circuits and Systems Int. Symp., , 329-332, 2004.        Google Scholar

15. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, "Effcient sidelobe reduction technique for small-sized concentric circular arrays," Progress In Electromagnetics Research,, Vol. 65, 187-200, 2006.
doi:10.2528/PIER06092503        Google Scholar

16. Albagory, , Y. A., M. Dessousky, and H. Sharshar, , "An approach for low sidelobe beamforming in uniform concentric circular arrays," Wireless Personal Communications,, Vol. 43, , 1363-1368, 2007.
doi:10.1007/s11277-007-9310-3        Google Scholar

17. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, , "Optimum normalized-gaussian tapering window for side lobe reduction in uniform concentric circular arrays," Progress In Electromagnetics Research, , Vol. Vol. 69, 35-46, 2007.
doi:10.2528/PIER06111301        Google Scholar

18. Haupt, , R. L., , "Optimized element spacing for low sidelobe concentric ring array," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 1, 266-268, Jan. 2008.
doi:10.1109/TAP.2007.913176        Google Scholar

19. Haupt. R. L., "Thinned concentric ring array," Proc. IEEE Antennas and Propagation Int. Symp., , 1-4, 2008.        Google Scholar

20. Pathak. , N., P. Nanda, and G. K. Mahanti, , "Synthesis of thinned multiple concentric circular ring array antennas using particle swarm optimization," Journal of Infrared, Millimeter and Terahertz Waves,, Vol. 30, No. 7, 709-716, 2009.
doi:10.1007/s10762-009-9499-1        Google Scholar

21. Pathak., N, G. K. Mahanti, S. K. Singh, J. K. Mishra, and A. Chakraborty, , "Synthesis of thinned planar circular array antennas using modi¯ed particle swarm optimization," Progress In Electromagnetics Research Letters, , Vol. 12, 87-97, 2009.
doi:10.2528/PIERL09090606        Google Scholar

22. Chatterjee, , A., G. K. Mahanti, and N. N. Pathak, , "Comparative performance of gravitational search algorithm and modified parti- cle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna," Progress In Electromagnetics Research B, , Vol. 25, , 331-348, 2010.
doi:10.2528/PIERB10080405        Google Scholar

23. Chatterjee, A., G. K. Mahanti, A. Chakrabarty, and P. R. S. Mahapatra, , "Phase-only sidelobe reduction of a uniformly excited concentric ring array antenna using modified particle swarm optimization," ," International Journal of Microwave and Optical Technology, , Vol. 6, No. 1, 57-62, , 2011.        Google Scholar

24. Haupt, R. L., , Antenna Arrays: A Computational Approach,, Wiley-IEEE Press, , 2010.
doi:10.1002/9780470937464

25. Yang, , X. S., , "Firefly algorithms for multimodal optimization ," Stochastic Algorithms: Foundations and Applications, , Vol. 5792, 169-178, 2009.
doi:10.1007/978-3-642-04944-6_14        Google Scholar

26. Lukasik, , S., S. Z_ ak, and , "Firefly algorithm for continuous constrained optimization tasks," Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, Vol. 5796, 97-106, 2009..
doi:10.1007/978-3-642-04441-0_8        Google Scholar

27. Yang, , X. S., , Engineering Optimization: An Introduction with Metaheuristic Applications, , 2010.
doi:10.1002/9780470640425

28. Kennedy, , J., R. Eberhart, and , "Particle swarm optimization," Proc. IEEE Int. Conf. Neural Networks, , Vol. 4, 1942-1948, 1995.
doi:10.1109/ICNN.1995.488968        Google Scholar

29. Clerc, , M., J. Kennedy, and , "The particle swarm | explosion stability and convergence in a multidimensional complex space," IEEE Trans. on Evol. Comput.,, Vol. 6, No. 1, 58-73, Feb. 2002..
doi:10.1109/4235.985692        Google Scholar

30. Hollander, , M., D. A. Wolfe, and , Nonparametric Statistical Methods, , 2nd Ed., 1999.

31. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the di®erential evolution method for the design of scanable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308        Google Scholar

32. Roy, G. G., S. Das, P. Chakraborty, and P. N. Suganthan, , "Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm," IEEE Trans. on Antennas and Propagation,, Vol. 59, No. 1, 110-118, Jan. 2011.
doi:10.1109/TAP.2010.2090477        Google Scholar