Vol. 36
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-26
Broadband Transmission Characteristics of Overhead High-Voltage Power Line Communication Channels
By
Progress In Electromagnetics Research B, Vol. 36, 373-398, 2012
Abstract
This paper considers broadband signal transmission via high-voltage/broadband over power lines (HV/BPL) channels associated with overhead power transmission. To determine the end-to-end channel characteristics of various overhead HV/BPL multiconductor transmission line (MTL) configurations, the chain scattering matrix or T-Matrix (TM) method is adopted. The overhead HV/BPL transmission channel is investigated with regard to its spectral behavior, its {end-to-end} signal attenuation, and phase response. It is found that the above features depend critically on the frequency, the coupling scheme applied, the physical properties of the cables used, the MTL configuration, and the type of branches existing along the {end-to-end} BPL signal propagation. Unlike the older models that underestimate the broadband transmission potential of overhead HV lines significantly, the results demonstrate that the overhead HV grid is a potentially excellent communications medium, offering low loss characteristics over a 100 km repeater span well beyond 100 MHz and guarantees the imminent coexistence of low-voltage (LV), medium-voltage (MV), and HV BPL systems towards a unified transmission/distribution smart grid (SG) power grid.
Citation
Athanasios G. Lazaropoulos, "Broadband Transmission Characteristics of Overhead High-Voltage Power Line Communication Channels," Progress In Electromagnetics Research B, Vol. 36, 373-398, 2012.
doi:10.2528/PIERB11091408
References

1. Newbury, J., , "Broadband power line communications for the electricity supply industry," Proc. 2008 IEEE/PES Transmission and Distribution Conference and Exposition, 1-8, Apr. 2008.
doi:10.1109/TDC.2008.4517286        Google Scholar

2. "OPERA1, D44, Report Presenting the Architecture of PLC System, the Electricity Network Topologies, the Operating Modes and the Equipment over which PLC Access System Will be Installed, IST Integr. Project No 507667,", Dec. 2005.
doi:http://www.ist-opera.org/opera1/downloads/D44 Architecture PLC.z        Google Scholar

3. Pavlidou, N., A. H. Vinck, J. Yazdani, and B. Honary, "Power line communications: State of the art and future trends," IEEE Commun. Mag., Vol. 41, No. 4, 3440, Apr. 2003.
doi:10.1109/MCOM.2003.1193972        Google Scholar

4. Biglieri, E., S. Galli, Y. W. Lee, H. Poor, and H. Vinck, "Power line communications (Guest Editorial)," IEEE J. Sel. Areas Commun., Vol. 24, No. 7, 1261-1266, Jul. 2006.
doi:10.1109/JSAC.2006.874398        Google Scholar

5. Galli, S., A. Scaglione, and Z. Wang, "For the grid and through the grid: The role of power line communications in the smart grid," Proc. IEEE, Vol. 99, No. 6, 998-1027, Jun. 2011.
doi:10.1109/JPROC.2011.2109670        Google Scholar

6. Galli, , S., A. Scaglione, and K. Dostert, "Broadband is power: Internet access through the power line network (Guest Editorial)," IEEE Commun. Mag., Vol. 41, No. 5, 8283, May 2003.
doi:10.1109/MCOM.2003.1200105        Google Scholar

7. Ferreira, , H., L. Lampe, J. Newbury, and T. G. Swart, "Power Line Communications, Theory and Applications for Narrowband and Broadband Communications over Power Lines," Wiley, , 2010.        Google Scholar

8. Latchman, H., L. Yonge, and , "Power line local area networking (Guest Editorial)," IEEE Commun. Mag., Vol. 41, No. 4, 3233, Apr. 2003.
doi:10.1109/MCOM.2003.1193971        Google Scholar

9. Prasanna, , G. N. S., A. Lakshmi, S. Sumanth, V. Simha, J. Bapat, and G. Koomullil, "Data communication over the smart grid," Proc. IEEE Int. Symp. Power Line Communications and Its Applications , 273-279, Mar./Apr 2009.
doi:10.1109/ISPLC.2009.4913442        Google Scholar

10. NATO "HF Interference, Procedures and tools (Interferences HF, procedures et outils) final report of NATO RTO information systems technology ," RTO-TR-ISTR-050, , Jun. 2007.
doi:http://ftp.rta.nato.int/public/PubFullText/RTO/TR/RTO-TR-IST-050        Google Scholar

11. Anastasopoulos, , M. P., A. C. Voulkidis, A. V. Vasilakos, and P. G. Cottis, "A secure network management protocol for Smart-Grid BPL networks: Design, implementation and experimental results ," Elsevier Computer Communications, Vol. 31, No. 8, 4333-4342, Dec. 2008..        Google Scholar

12., Aquilu¶e, R., I. Gutierrez, J. L. Pijoan, and G. Sanchez, "High-voltage multicarrier spread-spectrum system field test," IEEE Trans. Power Del., Vol. 24, No. 3, 1112-1121, Jul. 2009.
doi:10.1109/TPWRD.2008.2002847        Google Scholar

13. Aquilue, R., J. L. Pijoan, and G. Sanchez, "High voltage channel measurements and field test of a low power OFDM system," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 1-6, Apr. 2008.
doi:10.1109/ISPLC.2008.4510389        Google Scholar

14. Horowitz, S., A. Phadke, and B. Renz, "The future of power transmission," IEEE Power Energy Mag., Vol. 8, No. 2, 34-40, Mar. 2010.
doi:10.1109/MPE.2009.935554        Google Scholar

15. US Department of Energy accelerate the transmission smart grid, "Broadband over power lines could ," Tech. Rep., 2010.        Google Scholar

16. Moyo, , N. M., N. B. Ijumba, and A. C. Britten, "Investigations on the noise generation phenomena in the PLC system of a long HVDC line ," Proc. Int. Conf. Power System Tech., 953-957, Oct. 2002.
doi:10.1109/ICPST.2002.1047540        Google Scholar

17. Suljanovic, , N., A. Mujcic, M. Zajc, and J. F. Tasic, "Corona noise characteristics in high voltage PLC channel," Proc. Int. Conf. on Industrial Tech., Vol. 2, 1036-1039, Dec. 2003.
doi:10.1109/ICIT.2003.1290805        Google Scholar

18. Mujcic, , A., N. Suljanovic, M. Zajc, and J. F. Tasic, "Design of channel coding methods in HV PLC communications," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 379-384, Mar./Apr 2004.        Google Scholar

19. Mujcic, A., N. Suljanovic, M. Zajc, and J. F. Tasic, "High-voltage PLC roles in packet-switching networks of power utilities," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 204-209, Mar. 2007.        Google Scholar

20. Pighi, , R., R. Raheli, and , "On multicarrier signal transmission for high-voltage power lines," Proc. IEEE Int. Symp. Power Line, 32-36, Apr. 2005.        Google Scholar

21. DLC+VIT4IP, "D1.2: Overall system architecture design DLC system architecture. FP7 Integrated Project,", No. 247750, Jun. 2010.
doi:dlcvit4ip.org/wb/media/Downloads/D1.2n%20systemn%20architecture        Google Scholar

22. Dostert, , K., , Powerline Communications, , Upper Saddle River, Prentice-Hall, , 2001.

23. Suljanovic, N., A. Mujcic, M. Zajc, and J. F. Tasic, "Computation of high-frequency and time characteristics of corona noise on HV power line ," IEEE Trans. Power Del., Vol. 20, No. 1, 71-79, Jan. 2005.
doi:10.1109/TPWRD.2004.838656        Google Scholar

24. Suljanovic, , N., A. Mujcic, M. Zajc, and J. F. Tasic, "Integrated communication model of the HV power-line channel," Proc. IEEE Int. Symp. Power Line Communications and Its Applications,, 79-84, Mar./Apr 2004.        Google Scholar

25. Suljanovic, , N., A. Mujcic, M. Zajc, and J. F. Tasic, "Approximate computation of high-frequency characteristics for power line with horizontal disposition and middle-phase to ground coupling ," Elsevier Electr. Power Syst. Res., Vol. 69, 24, Jan. 2004.        Google Scholar

26. Bakshi, , U. A., M. V. Bakshi, and , Generation, Transmission and Distribution, Technical Publications Pune, , 2001..

27. De Sosa, , J. C., Analysis and Design of High-voltage Transmission Lines, 2010..

28. Lazaropoulos, A. G., P. G. Cottis, and , "Capacity of overhead medium voltage power line communication channels," IEEE Trans. Power Del.,, Vol. 25, No. 2, 723-733, Apr. 2010.
doi:10.1109/TPWRD.2009.2034907        Google Scholar

29. Lazaropoulos, A. G., P. G. Cottis, and , "Broadband transmission via underground medium-voltage power lines --- Part I: Transmission characteristics," IEEE Trans. Power Del., Vol. 25, No. 4, 2414-2424, Oct. 2010.
doi:10.1109/TPWRD.2010.2048929        Google Scholar

30. Lazaropoulos, A. G., P. G. Cottis, and , "Broadband transmission via underground medium-voltage power lines --- Part II: Capacity," IEEE Trans. Power Del.,, Vol. 25, No. 4, 2425-2434, Oct. 2010.
doi:10.1109/TPWRD.2010.2052113        Google Scholar

31. Gebhardt, , M., F. Weinmann, and K. Dostert, , "Physical and regulatory constraints for communication over the power supply grid ," IEEE Commun. Mag., Vol. 41, No. 5, 84-90, May 2003.
doi:10.1109/MCOM.2003.1200106        Google Scholar

32. Henry, P. S., "Interference characteristics of broadband power line communication systems using aerial medium voltage wires, ," IEEE Commun. Mag., Vol. 43, No. 4, 92-98, Apr. 2005.
doi:10.1109/MCOM.2005.1421910        Google Scholar

33. Liu, , S., L. J. Greenstein, and , "Emission characteristics and interference constraint of overhead medium-voltage broadband power line (BPL) systems," Proc. IEEE Global Telecommunications Conf., 1-5, Nov./Dec 2008.        Google Scholar

34. GÄotz, , M., M. Rapp, and K. Dostert, "Power line channel characteristics and their effect on communication system design," IEEE Commun. Mag.,, Vol. 42, No. 4, 78-86, Apr. 2004..
doi:10.1109/MCOM.2004.1284933        Google Scholar

35. Fenton, D., P. Brown, and , "Some aspects of benchmarking high frequency radiated emissions from wireline communications systems in the near and far fields," Proc. IEEE Int. Symp. on Power Line Communications and Its Applications, , 161-167, Apr. 2001.        Google Scholar

36. Fenton, , D. and P. Brown, "Modelling cumulative high frequency radiated interference from power line communication systems," Proc. IEEE Int. Conf. on Power Line Communications and Its Applications , Mar. 2002.        Google Scholar

37. Zimmermann, , M. a, K. Dostert, and , "A multipath model for the powerline channel," IEEE Trans. Commun., Vol. 50, No. 4, 553-559, Apr. 2002..
doi:10.1109/26.996069        Google Scholar

38. Galli, , S. and O. Logvinov, "Recent developments in the standardization of power line communications within the IEEE," IEEE Commun. Mag., Vol. 64, No. 7, 64-71, Jul. 2008.
doi:10.1109/MCOM.2008.4557044        Google Scholar

39. Tonello, , A. M., F. Pecile, and , "Effcient architectures for multiuser FMT systems and application to power line communications," IEEE Trans. Commun., Vol. 57, No. 5, 1275-1279, May 2009.
doi:10.1109/TCOMM.2009.05.070328        Google Scholar

40. Versolatto, F., A. M. Tonello, and , "An MTL theory approach for the simulation of MIMO power-line communication channels," IEEE Trans. Power Del., Vol. 26, No. 3, 1710-1717, Jul. 2011.
doi:10.1109/TPWRD.2011.2126608        Google Scholar

41. Lazaropoulos, , A. G., P. G. Cottis, and , "Transmission charac teristics of overhead medium voltage power line communication channels," IEEE Trans. Power Del., Vol. 24, No. 3, 1164-1173, Jul. 2009.
doi:10.1109/TPWRD.2008.2008467        Google Scholar

42. Amirshahi, , P. and M. Kavehrad, "High-frequency characteristics of overhead multiconductor power lines for broadband communications," IEEE J. Sel. Areas Commun., Vol. 24, No. 7, 1292-1303, Jul. 2006.
doi:10.1109/JSAC.2006.874399        Google Scholar

43. Sartenaer, T., , Multiuser communications over frequency selective wired channels and applications to the power-line access network, Ph.D. Dissertation, Univ. Catholique Louvain, , Louvain-la-Neuve, Belgium, , Sep. 2004.
doi:http://www.tele.ucl.ac.be/ts/PhD.php

44. Calliacoudas, , T., F. Issa, and , "Multiconductor transmission lines and cables solver,' An e±cient simulation tool for plc channel networks development ," IEEE Int. Conf. Power Line Communications and Its Applications, Mar. 2002.        Google Scholar

45. Galli, , S., T. Banwell, and , "A deterministic frequency-domain model for the indoor power line transfer function," IEEE J. Sel. Areas Commun., Vol. 24, No. 7, 1304-1316, Jul. 2006.
doi:10.1109/JSAC.2006.874428        Google Scholar

46. Galli, , S., T. Banwell, and , "A novel approach to accurate modeling of the indoor power line channel | Part II: Transfer function and channel properties," IEEE Trans. Power Del., Vol. 20, No. 3, 1869-18778, Jul. 2005.
doi:10.1109/TPWRD.2005.848732        Google Scholar

47. Paul, , C. R., , Analysis of Multiconductor Transmission Lines, Wiley, 1994.

48. Faria, , J. A. B., , "Multiconductor Transmission-line Structures: Modal Analysis Techniques," Wiley, , 1994.        Google Scholar

49. Sartenaer, , T., P. Delogne, and , "Deterministic modelling of the (Shielded) outdoor powerline channel based on the multiconductor transmission line equations, ," IEEE J. Sel. Areas Commun.,, Vol. 24, No. 7, 1277-1291, Jul. 2006.
doi:10.1109/JSAC.2006.874423        Google Scholar

50. Sartenaer, , T., P. Delogne, and , "Powerline cables modelling for broadband communications," Proc. IEEE Int. Conf. Power Line Communications and Its Applications, 331-337, Apr. 2001..        Google Scholar

51. Perez, , A., A. M. Sanchez, J. R. Regue, M. Ribo, R. Aquilue, P. Rodreguez-Cepeda, and F. J. Pajares, "Circuital and modal characterization of the power-line network in the PLC band," IEEE Trans. Power Del., Vol. 24, No. 3, 1182-1189, Jul. 2009.
doi:10.1109/TPWRD.2009.2014278        Google Scholar

52. Meng, , H., S. Chen, Y. L. Guan, C. L. Law, P. L. So, E. Gunawan, and T. T. Lie, "Modeling of transfer characteristics for the Power Del.,", Vol. 19, No. 3, 1057-1064, Jul. 2004.
doi:10.1109/TPWRD.2004.824430        Google Scholar

53. Philipps, , H., , "Modelling of powerline communications channels," Proc. IEEE Int. Symp. Power Line Communications and Its Applications , 14-21, Mar./Apr 1999.        Google Scholar

54. Anastasiadou, , D., T. Antonakopoulos, and , "Multipath characterization of indoor power-line networks," IEEE Trans. Power Del., Vol. 20, No. 1, 90-99, Jan. 2005.
doi:10.1109/TPWRD.2004.832373        Google Scholar

55. Amirshahi, , P., , Broadband access and home networking through powerline networks, Ph.D. Dissertation, Pennsylvania State Univ., , University Park, PA, , May 2006.
doi:http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD

56. Barmada, , S., A. Musolino, and M. Raugi, , "Innovative model for time-varying power line communication channel response evaluation," IEEE J. Sel. Areas Commun., Vol. 24, No. 7, 1317-1326, Jul. 2006.
doi:10.1109/JSAC.2006.874426        Google Scholar

57. D'Amore, M., M. S. Sarto, and , "A new formulation of lossy ground return parameters for transient analysis of multiconductor dissipative lines," IEEE Trans. Power Del., Vol. 12, No. 1, 303-314, Jan. 1997.
doi:10.1109/61.568254        Google Scholar

58. Suljanovic, N., A. Mujcic, M. Zajc, and J. F. Tasic, "High-frequency characteristics of high-voltage power line," Proc. IEEE Int. Conf. on Computer as a Tool,, 310-314, Sep. 2003.        Google Scholar

59. Suljanovic, , N., A. Mujcic, M. Zajc, and J. F. Tasic, , "Power-line high-frequency characteristics: analytical formulation," Proc. Joint 1st Workshop on Mobile Future & Symposium on Trends in Communications, 106-109, Oct. 2003..
doi:10.1109/TIC.2003.1249100        Google Scholar

60. Villiers, W., J. H. Cloete, and R. Herman, "The feasibility of ampacity control on HV transmission lines using the PLC system," Proc. IEEE Conf. Africon, Vol. 2, 865-870, Oct. 2002.
doi:10.1109/AFRCON.2002.1160027        Google Scholar

61. Zajc, , M., N. Suljanovic, A. Mujcic, and J. F. Tasic, "Frequency characteristics measurement of overhead high-voltage power-line in low radio-frequency range," IEEE Trans. Power Del., Vol. 22, No. 4, 2142-2149, Oct. 2007.
doi:10.1109/TPWRD.2007.905369        Google Scholar

62. Amirshahi, , P., M. Kavehrad, and , "Medium voltage overhead powerline broadband communications; Transmission capacity and electromagnetic interference," Proc. IEEE Int. Symp. Power Line Commun. Appl., 2-6, Apr. 2005..        Google Scholar

63. D'Amore, M., M. S. Sarto, and , "Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range | Part I: Single conductor configuration," IEEE Trans. Electromagn. Compat.,, Vol. 38, No. 2, 127-138, May 1996..
doi:10.1109/15.494615        Google Scholar

64. D'Amore, , M., M. S. Sarto, and , "Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range | Part II: Multi-conductor configuration," IEEE Trans. Electromagn. Compat., Vol. 38, No. 2, 139-149, May 1996.
doi:10.1109/15.494616        Google Scholar

65. Anatory, J. and N. Theethayi, "On the efficacy of using ground return in the broadband power-line communications-A transmission-line analysis ," IEEE Trans. Power Del., Vol. 23, No. 1, 132-139, Jan. 2008..
doi:10.1109/TPWRD.2007.910987        Google Scholar

66. Carson, , J. R., , "Wave propagation in overhead wires with ground return," Bell Syst. Tech. J., Vol. 5, 539-554, 1926.        Google Scholar

67. Kikuchi, H., , "Wave propagation along an infinite wire above ground at high frequencies," Proc. Electrotech. J., Vol. 2, 73-78, Dec. 1956.        Google Scholar

68. Kikuchi, , H., "On the transition form a ground return circuit to a surface waveguide," Proc. Int. Congr. Ultrahigh Frequency Circuits Antennas, 39-45, Oct. 1957.        Google Scholar

69. Issa, , F., D. Chaffanjon, E. P. de la B^athie, and A. Pacaud, "An e±cient tool for modal analysis transmission lines for PLC networks development," IEEE Int. Conf. Power Line Communications and Its Applications, Mar. 2002..        Google Scholar

70. Villiers, , W., J. H. Cloete, L. M. Wedepohl, and A. Burger, "Real-time sag monitoring system for high-voltage overhead Real-time sag monitoring system for high-voltage overhead," IEEE Trans. Power Del., Vol. 23, No. 1, 389-395, Jan. 2008.
doi:10.1109/TPWRD.2007.905550        Google Scholar

71. Lodwig, S. G., C. C. Schuetz, and , "Coupling to control cables in HV substations," Proc. IEEE Int. Symp. ElectroMagentic Compatibility, 249-253, Mar. 2001.        Google Scholar

72. Van der Wielen, , P. C. J. M., On-line detection and location of partial discharges in medium-voltage power cables, Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, the Netherlands, , Apr. 2005.
doi:http://alexandria.tue.nl/extra2/200511097.pdf

73. Wouters, P. A. A. F., P. C. J. M. van der Wielen, J. Veen, P. Wagenaars, and E. F. Steennis, "Effect of cable load impedance on coupling schemes for MV power line communication," IEEE Trans. Power Del., Vol. 20, No. 2, 638-645, Apr. 2005.
doi:10.1109/TPWRD.2005.844334        Google Scholar

74. Anatory, , J., N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, "The influence of load impedance, line length, and branches on underground cable Power-Line Communications (PLC) systems," IEEE Trans. Power Del., Vol. 23, No. 1, 180-187, Jan. 2008.
doi:10.1109/TPWRD.2007.911020        Google Scholar

75. Yarman, , B. S., A. Fettweiss, and , "Computer aided double matching via parametric representation of Brune functions," IEEE Trans. Circuits Syst., Vol. 37, No. 2, 212-222, Feb. 1990.
doi:10.1109/31.45713        Google Scholar

76. Araneo, , R., S. Celozzi, G. Lovat, and F. Maradei, , "Multi-port impedance matching technique for power line communications," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, , 96-101, Apr. 2011.        Google Scholar

77. Papadopoulos, , T. A., B. D. Batalas, A. Radis, and G. K. Pa-pagiannis, , "Medium voltage network PLC modeling and signal propagation analysis," Proc. IEEE Int. Symp. Power Line Com-munications and Its Applications,, 284-289, Mar. 2007.
doi:10.1109/ISPLC.2007.371138        Google Scholar

78. Fortunato, , E., A. Garibbo, and L. Petrolino, , "An experimental system for digital power line communications over high voltage electric power lines --- Field trials and obtained results," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, , 26-31, Mar. 2003.        Google Scholar

79. Anatory, , J., N. Theethayi, and R. Thottappillil, , "Power-line communication channel model for interconnected networks --- Part II: Multiconductor system," IEEE Trans. Power Del. , Vol. 24, No. 1, 124-128, Jan. 2009..        Google Scholar

80. Pang, T. S., P. L. So, K. Y. See, and A. Kamarul, "Modeling and analysis of common-mode current propagation in broadband power-line communication networks," IEEE Trans. Power Delivery,, Vol. 23, No. 1, 171-179, Jan. 2008.        Google Scholar

81. Vukicevic, , A., M. Rubinstein, F. Rachidi, and J. L. Bermudez, "On the mechanisms of differential-mode to common-mode conversion in the broadband over power line (BPL) frequency band," Proc. 2006 International Zurich Symposium on Electromagnetic Compatibility, , 658-661, Feb. 2006.        Google Scholar

82. FCC, "In the Matter of Amendment of Part 15 Re-garding New Requirements and Measurement Guide-lines for Access Broadband over Power Line Systems,", Jul. 2008.
doi:http://www.fcc.gov/oet/info/rules/part15/PART15 07-10-08.pdf.        Google Scholar

83. NTIA, "Potential interference from broadband over power line (BPL) systems to federal government ra-dio communications at 1.7{80MHz Phase 1 Study," NTIA Rep. 04-413, , Apr. 2004.
doi:http://www.ntia.doc.gov/ntiahome/fccfilings/2004/bpl/        Google Scholar

84. Kuhn, L. M., S. Berger, I. HammerstrÄom, and A. Wittneben, "Power line enhanced cooperative wireless communications," IEEE J. Sel. Areas Commun.,, Vol. 24, No. 7, 1401-1410, Jul. 2006.        Google Scholar

85. Anatory, , J., N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, , "The effects of load impedance, line length, and branches in typical low-voltage channels of the BPLC systems of developing countries: Transmission-line analyses," IEEE Trans. Power Del., , Vol. 24, No. 2, 621-629, , Apr. 2009.        Google Scholar

86. "OPERA1, D5: Pathloss as a Function of Frequency, Distance and Network Topology for Various LV and MV European Powerline Networks. IST Integrated Project,", No. 507667, Apr. 2005.
doi:http://www.istopera.org/opera1/downloads/D5/D5 Pathloss.pdf.        Google Scholar

87. Galli, , S., Y. Masuda, and Y. Urabe, , "Time reuse algorithms: A novel approach to solving the issue of scalability in dense power line networks," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, , 101-106, Mar./Apr 2009..        Google Scholar

88. Gellings, C. W., M. Samotyj, and B. Howe, "The futures power delivery system," IEEE Power Energy Mag., Vol. 2, No. 5, , 4048, Sep./Oct 2004.        Google Scholar

89. Galli, , S., A. Kurobe, and M. Ohura, "The inter-PHY protocol (IPP): A simple coexistence protocol for shared media," Proc. IEEE Int. Symp. Power Line Communications and Its Applications,, 194-200, Mar./Apr 2009.        Google Scholar

90. Arlandis, , D., J. Barbero, A. Matas, S. Iranzo, J. C. Riveiro, and D. Ruiz, "Coexistence in PLC networks," IEEE Int. Symp. on Power Line Communications and Its Applications, , 260-264, Apr. 2005.        Google Scholar