1. Zheng, H., N. D. Black, and N. D. Harris, "Position-sensing technologies for movement analysis in stroke rehabilitation," Medical and Biological Engineering and Computing Journal, Vol. 43, No. 4, 413-420, Aug. 2005.
doi:10.1007/BF02344720 Google Scholar
2. Goulermas, J., D. Howard, C. Nester, R. Jones, and L. Ren, "Regression techniques for the prediction of lower limb kinematics," Journal of biomechanical engineering, Vol. 127, No. 6, 1020-1024, Nov. 2005.
doi:10.1115/1.2049328 Google Scholar
3. Di Renzo, M., R. Buehrer, and J. Torres, "Pulse shape distortion and ranging accuracy in UWB-based body area networks for full-body motion capture and gait analysis," IEEE Global Telecommunications Conference, GLOBECOM '07, 3775-3780, Nov. 26-30, 2007. Google Scholar
4. Zasowski, T. and A. Wittneben, "Performance of UWB receivers with partial CSI using a simple body area network channel model," IEEE Journal on Selected Areas in Communications, Vol. 27, No. 1, 17-26, Jan. 2009.
doi:10.1109/JSAC.2009.090103 Google Scholar
5. Yazdandoost , K. Y. and K. S.-Pour, "Channel model for body area network (BAN)," Tech. Rep., Apr. 2009, doc: IEEE P802.15-08-0780-09-0006. Google Scholar
6. Shaban, H., M. Abou El-Nasr, and R. Buehrer, "Toward a highly accurate ambulatory system for clinical gait analysis via UWB radios," IEEE Transactions on Information Technology in Biomedicine, Vol. 14, No. 2, 284-291, Mar. 2010.
doi:10.1109/TITB.2009.2037619 Google Scholar
7. Shaban, H., "A novel highly accurate wireless wearable human locomotion tracking and gait analysis system via UWB radios,", Ph.D. Dissertation,Virginia Tech, 2010.
doi:10.1109/TITB.2009.2037619 Google Scholar
8. Barker, S., W. Freedman, and H. Hillstorm, "A novel method of producing a repetitive dynamic signal to examine reliability and validity of gait analysis systems," Gait and Postur, Vol. 24, No. 4, 448-452, Dec. 2006.
doi:10.1016/j.gaitpost.2005.09.008 Google Scholar
9. Menz, H., M. Latt, A. Tiedemann, M. Kwan, and S. Lord, "Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people," Gait and Posture, Vol. 20, No. 1, 20-25, Aug. 2004.
doi:10.1016/S0966-6362(03)00068-7 Google Scholar
10. Sangyoub , L., "Design and analysis of ultra-wide bandwidth impulse radio receiver,", Ph.D. dissertation, Southern California University, 2002. Google Scholar
11. Dederer, J., B. Schleicher, F. De Andrade Tabarani Santos, A. Trasser, and H. Schumacher, "Fcc compliant 3.1-10.6 GHz UWB pulse radar system using correlation detection," IEEE/MTT-S International Microwave Symposium, 1471-1474, Jun. 2007.
doi:10.1109/MWSYM.2007.380530 Google Scholar
12. Reed, J. H., "An Introduction to Ultra Wideband Communication Systems," Prentice Hall, New Jersey, 2005. Google Scholar
13. Ryckaert, J., M. Verhelst, M. Badaroglu, S. D'Amico, V. De Heyn, C. Desset, P. Nuzzo, B. Van Poucke, P. Wambacq, A. Baschirotto, and W. Dehaene, "A CMOS ultra-wideband receiver for low data-rate communication," IEEE Journal of Solid-State Circuits, Vol. 42, No. 11, 2515-2527, Nov. 2007.
doi:10.1109/JSSC.2007.907195 Google Scholar
14. Heydari, P., "A study of low-power ultra wideband radio transceiver architectures," IEEE Wireless Communications and Networking Conference, Vol. 2, 758-763, Mar. 2005.
doi:10.1109/WCNC.2005.1424603 Google Scholar
15. Verhelst, M., W. Vereecken, M. Steyaert, and W. Dehaene, "Architectures for low power ultra-wideband radio receivers in the 3.1-5 GHz band for data rates < 10 Mbps," ISLPED '04: Proceedings of the 2004 International Symposium on Low Power Electronics and Design, 280-285, 2004.
doi:10.1145/1013235.1013305 Google Scholar
16. Newaskar, P., R. Blazquez, and A. Chandrakasan, "A/D precision requirements for an ultra-wideband radio receiver," IEEE Workshop on Signal Processing Systems, (SIPS '02), 270-275, Oct. 16-18, 2002. Google Scholar
17. Verhelst, M., et al. "Design of an energy-efficient pulsed UWB receiver," Proceedings of AACD Workshop, 2006. Google Scholar
18. Das, A., H. Bhasin, and S. Giduturi, "A 10mW 9.7ENoB 80MPS pipeline ADC in 65nm CMOS process without any special mask requirement and with single 1.3V supply,", 165-168, Sept. 2009. Google Scholar
19. Goldberger, A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, "PhysioBank, physiotoolkit, and physioNet: Components of a new research resource for complex physiologic signals," Circulation, Vol. 101, No. 23, e215-e220, Jun. 13, 2000. Google Scholar
20. Vaughan, C., "GaitCD,", CD-ROM, Cape Town, South Africa, 1999. Google Scholar