1. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Wireless Comp. Lett., Vol. 11, 130-132, Mar. 2001.
doi:10.1109/7260.915627 Google Scholar
2. Bond, E. J., et al. "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Ant. Propag., Vol. 51, 1690-1705, Aug. 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
3. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection: Experimental investigation of simple tumor models," IEEE Trans. Microw. Theory Tech., Vol. 53, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330 Google Scholar
4. Bourqui, J., et al. "A prototype system for measuring microwave frequency reflections from the breast," Int. J. Biomed. Imag., Vol. 2012, 2012.
doi:10.1155/2012/562563 Google Scholar
5. Klemm, M., et al. "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Trans. Ant. Propag., Vol. 58, 2337-2344, 2010.
doi:10.1109/TAP.2010.2048860 Google Scholar
6. Fear, E. C. and J. M. Sill, "Preliminary investigations of tissue sensing adaptive radar for breast tumor detection," Proc. 25th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 3787-3790, 2003. Google Scholar
7. Jacobsen, S. and Y. Birkelund, "Improved resolution and reduced clutter in ultra-wideband microwave imaging using cross-correlated back projection: Experimental and numerical results," Int. J. Biomed. Imag., Vol. 2010, 2010.
doi:10.1155/2010/781095 Google Scholar
8. O'Halloran, M., et al. "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng., Vol. 57, 830-840, 2010.
doi:10.1109/TBME.2009.2016392 Google Scholar
9. Maskooki, A., E. Gunawan, C. B. Soh, and K. S. Low, "Frequency domain skin artifact removal method for ultra-wideband breast cancer detection," Progress In Electromagnetics Research, Vol. 98, 299-314, 2009.
doi:10.2528/PIER09101302 Google Scholar
10. Wanjun, Z. and F. Chin, "Entropy-based time window for artifact removal in UWB imaging of breast cancer detection," IEEE Signal Proc. Lett., Vol. 13, 585-588, 2006.
doi:10.1109/LSP.2006.876346 Google Scholar
11. Winters, D. W., et al. "Estimating the breast surface using UWB microwave monostatic backscatter measurements," IEEE Trans. Biomed. Eng., Vol. 55, 247-256, Jan. 2008.
doi:10.1109/TBME.2007.901028 Google Scholar
12. Maklad, B. and E. C. Fear, "Reduction of skin reflections in radar-based microwave breast imaging," Proc. 30th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 21-24, 2008.
doi:10.1109/IEMBS.2008.4649081 Google Scholar
13. Bourqui, J., et al. "Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Ant. Propag., Vol. 58, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844 Google Scholar
14. Sill, J. M., et al. "Realistic breast models for second generation tissue sensing adaptive radar system," Proc. EuCAP 2007, 4, 2007. Google Scholar
15. Kurrant, D. J. and E. C. Fear, "An improved technique to predict the time-of-arrival of a tumor response in radar-based breast imaging," IEEE Trans. Biomed. Eng., Vol. 56, 1200-1208, 2009.
doi:10.1109/TBME.2008.2011914 Google Scholar
16. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
17. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection: Study of immersion liquids," Electron. Lett., Vol. 41, 113-115, 2005.
doi:10.1049/el:20056953 Google Scholar
18. Fear, E. C., et al. "Antenna evaluation for ultra-wideband microwave imaging," Int. J. Ant. Prop., Vol. 2010, 2010. Google Scholar
19. Williams, T. C., J. Bourqui, T. R. Cameron, M. Okoniewski, and E. C. Fear, "Laser surface estimation for microwave breast imaging systems," IEEE Trans. Biomed. Eng., Vol. 58, 1193-1199, 2010.
doi:10.1109/TBME.2010.2098406 Google Scholar