Vol. 39
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-03-02
Neighborhood-Based Algorithm to Facilitate the Reduction of Skin Reflections in Radar-Based Microwave Imaging
By
Progress In Electromagnetics Research B, Vol. 39, 115-139, 2012
Abstract
Radar-based microwave imaging is being investigated as a complementary diagnostic tool for breast cancer detection. One of the major challenges associated with radar-based breast imaging is the removal of the overwhelming reflection caused by the skin. This paper presents an algorithm that has been designed for realistic 3D scenarios. The algorithm is tested on a variety of realistic 3D numerical breast models, as well as measured data from a phantom and patient. In all cases, the reflections from the skin are significantly reduced, facilitating detection of known tumors.
Citation
B. Maklad, C. Curtis, Elise C. Fear, and Geoffrey G. Messier, "Neighborhood-Based Algorithm to Facilitate the Reduction of Skin Reflections in Radar-Based Microwave Imaging," Progress In Electromagnetics Research B, Vol. 39, 115-139, 2012.
doi:10.2528/PIERB11122208
References

1. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Wireless Comp. Lett., Vol. 11, 130-132, Mar. 2001.
doi:10.1109/7260.915627

2. Bond, E. J., et al. "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Ant. Propag., Vol. 51, 1690-1705, Aug. 2003.
doi:10.1109/TAP.2003.815446

3. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection: Experimental investigation of simple tumor models," IEEE Trans. Microw. Theory Tech., Vol. 53, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330

4. Bourqui, J., et al. "A prototype system for measuring microwave frequency reflections from the breast," Int. J. Biomed. Imag., Vol. 2012, 2012.
doi:10.1155/2012/562563

5. Klemm, M., et al. "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Trans. Ant. Propag., Vol. 58, 2337-2344, 2010.
doi:10.1109/TAP.2010.2048860

6. Fear, E. C. and J. M. Sill, "Preliminary investigations of tissue sensing adaptive radar for breast tumor detection," Proc. 25th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 3787-3790, 2003.

7. Jacobsen, S. and Y. Birkelund, "Improved resolution and reduced clutter in ultra-wideband microwave imaging using cross-correlated back projection: Experimental and numerical results," Int. J. Biomed. Imag., Vol. 2010, 2010.
doi:10.1155/2010/781095

8. O'Halloran, M., et al. "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng., Vol. 57, 830-840, 2010.
doi:10.1109/TBME.2009.2016392

9. Maskooki, A., E. Gunawan, C. B. Soh, and K. S. Low, "Frequency domain skin artifact removal method for ultra-wideband breast cancer detection," Progress In Electromagnetics Research, Vol. 98, 299-314, 2009.
doi:10.2528/PIER09101302

10. Wanjun, Z. and F. Chin, "Entropy-based time window for artifact removal in UWB imaging of breast cancer detection," IEEE Signal Proc. Lett., Vol. 13, 585-588, 2006.
doi:10.1109/LSP.2006.876346

11. Winters, D. W., et al. "Estimating the breast surface using UWB microwave monostatic backscatter measurements," IEEE Trans. Biomed. Eng., Vol. 55, 247-256, Jan. 2008.
doi:10.1109/TBME.2007.901028

12. Maklad, B. and E. C. Fear, "Reduction of skin reflections in radar-based microwave breast imaging," Proc. 30th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 21-24, 2008.
doi:10.1109/IEMBS.2008.4649081

13. Bourqui, J., et al. "Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Ant. Propag., Vol. 58, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844

14. Sill, J. M., et al. "Realistic breast models for second generation tissue sensing adaptive radar system," Proc. EuCAP 2007, 4, 2007.

15. Kurrant, D. J. and E. C. Fear, "An improved technique to predict the time-of-arrival of a tumor response in radar-based breast imaging," IEEE Trans. Biomed. Eng., Vol. 56, 1200-1208, 2009.
doi:10.1109/TBME.2008.2011914

16. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

17. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection: Study of immersion liquids," Electron. Lett., Vol. 41, 113-115, 2005.
doi:10.1049/el:20056953

18. Fear, E. C., et al. "Antenna evaluation for ultra-wideband microwave imaging," Int. J. Ant. Prop., Vol. 2010, 2010.

19. Williams, T. C., J. Bourqui, T. R. Cameron, M. Okoniewski, and E. C. Fear, "Laser surface estimation for microwave breast imaging systems," IEEE Trans. Biomed. Eng., Vol. 58, 1193-1199, 2010.
doi:10.1109/TBME.2010.2098406