Vol. 39
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-02-22
Towards Broadband Over Power Lines Systems Integration: Transmission Characteristics of Underground Low-Voltage Distribution Power Lines
By
Progress In Electromagnetics Research B, Vol. 39, 89-114, 2012
Abstract
A complete methodology is employed to determine the transmission characteristics of low-voltage/broadband over power lines (LV/BPL) channels associated with underground power distribution networks, in the light of the multiconductor transmission line (MTL) theory. The established bottom-up approach, already used to treat overhead and underground MV/BPL transmission, is extended to analyze BPL transmission in three-phase N-conductor underground lines with common shield and armor. This analysis shows that these cables may support N + 2 modes, giving rise to N + 2 separate transmission channels which reduce to N + 1 if the armor either does not exist or is grounded and to N if the shield is also grounded. In addition to the generalized analysis, a simplified approximation concerning three-phase N-conductor underground cables is also presented. Taking the generalized analysis and the simplified approximation into account, their numerical results concerning attenuation in various underground LV/BPL channels in the frequency range 1-100 MHz are validated against relevant sets of simulations and measurements with satisfactory accuracy and compared to corresponding results of overhead and underground MV/BPL channels. It has been verified that the attenuation in overhead and underground BPL channels depends drastically on power distribution grid type, MTL configuration, and cables used. Moreover, the attenuation in underground LV/BPL channels exhibits a lowpass behavior, is significantly higher than that of overhead MV/BPL ones, and is comparable to that of underground MV/BPL ones. A consequence of the proposed methodology is that it can facilitate the integration process and intraoperability of LV/BPL and MV/BPL systems through their common physical layer handling.
Citation
Athanasios G. Lazaropoulos, "Towards Broadband Over Power Lines Systems Integration: Transmission Characteristics of Underground Low-Voltage Distribution Power Lines," Progress In Electromagnetics Research B, Vol. 39, 89-114, 2012.
doi:10.2528/PIERB12012409
References

1. Galli, S., "A novel approach to the statistical modeling of wireline channels,", Vol. 59, No. 5, 1332-1345, May 2011.
doi:10.1109/JPROC.2011.2109670        Google Scholar

2. Galli, S., A. Scaglione, and Z. Wang, "For the grid and through the grid: The role of power line communications in the smart grid," Proc. IEEE, Vol. 99, No. 6, 998-1027, Jun. 2011.
doi:10.1109/MCOM.2003.1200106        Google Scholar

3. Gebhardt, M., F. Weinmann, and K. Dostert, "Physical and regulatory constraints for communication over the power supply grid," EEE Commun. Mag., Vol. 41, No. 5, 84-90, May 2003.
doi:10.1109/MCOM.2003.1200109        Google Scholar

4. Jee, G., C. Edison, R. Das Rao, and Y. Cern, "Demonstration of the technical viability of PLC systems on medium- and low-voltage lines in the United States," IEEE Commun. Mag., Vol. 41, No. 5, 108-112, May 2003.
doi:10.1109/MCOM.2003.1200105        Google Scholar

5. Galli, S., A. Scaglione, and K. Dostert, "Broadband is power: Internet access through the power line network," IEEE Commun. Mag., Vol. 41, No. 5, 82-83, May 2003.
doi:10.1109/MCOM.2004.1284933        Google Scholar

6. Gotz, M., M. Rapp, and K. Dostert, "Power line channel characteristics and their effect on communication system design," IEEE Commun. Mag., Vol. 42, No. 4, 78-86, Apr. 2004.        Google Scholar

7. Amirshahi, P. and M. Kavehrad, "Medium voltage overhead power-line broadband communications; transmission capacity and electromagnetic interference ," Proc. IEEE Int. Symp. Power Line Communications Applications, 2-6, Vancouver, BC, Canada, Apr. 2005.
doi:10.1109/TPWRD.2008.2002963        Google Scholar

8. Aquilue, R., M. Ribo, J. R. Regue, J. L. Pijoan, and G. Sanchez, "Scattering parameters-based channel characterization and modeling for underground medium-voltage power-line communications," IEEE Trans. Power Del., Vol. 24, No. 3, 1122-1131, Jul. 2009.        Google Scholar

9. Tonello, A. M., F. Versolatto, and S. D'Alessandro, "Opportunistic relaying in in-home PLC networks," Proc. IEEE Global Telecommunications Conference, 1-5, Miami, FL, USA, Dec. 2010.
doi:10.1109/TPWRD.2011.2126608        Google Scholar

10. Versolatto, F. and A. M. Tonello, "An MTL theory approach for the simulation of MIMO power-line communication channels," IEEE Trans. Power Del., Vol. 26, No. 3, 1710-1717, Jul. 2011.        Google Scholar

11. Schneider, D., J. Speidel, L. Stadelmeier, and D. Schill, "Precoded spatial multiplexing MIMO for inhome power line communications," Proc. IEEE Global Telecommunications Conference, 1-5, New Orleans, LA, USA, Nov./Dec. 2008.
doi:10.1109/TPWRD.2010.2052113        Google Scholar

12. Lazaropoulos, A. G. and P. G. Cottis, "Broadband transmission via underground medium-voltage power line - Part II: Capacity," IEEE Trans. Power Del., Vol. 25, No. 4, 2425-2434, Oct. 2010.
doi:10.1109/MCOM.2009.5273821        Google Scholar

13. Oksman, V. and S. Galli, "G.hn: The new ITU-T home networking standard," IEEE Commun. Mag., Vol. 47, No. 10, 138-145, Oct. 2009.
doi:10.1109/JSAC.2006.874407        Google Scholar

14. , , , OPERA2, D51: White Paper: OPERA technology (final version). IST Integrated Project, No. 026920, Dec. 2008.
doi:10.2528/PIERB11091408

15. Kuhn, M., S. Berger, I. Hammerstrom, and A. Wittneben, "Power line enhanced cooperative wireless communications," IEEE J. Sel. Areas Commun., Vol. 24, No. 7, 1401-1410, Jul. 2006.
doi:10.1109/TPWRD.2008.2008467        Google Scholar

16. Lazaropoulos, A. G., "Broadband transmission characteristics of overhead high-voltage power line communication channels," Progress In Electromagnetics Research B, Vol. 36, 373-398, 2012.
doi:10.1109/TPWRD.2009.2034907        Google Scholar

17. Lazaropoulos, A. G. and P. G. Cottis, "Transmission characteristics of overhead medium voltage power line communication channels," IEEE Trans. Power Del., Vol. 24, No. 3, 1164-1173, Jul. 2009.
doi:10.1109/TPWRD.2010.2048929        Google Scholar

18. Lazaropoulos, A. G. and P. G. Cottis, "Capacity of overhead medium voltage power line communication channels," IEEE Trans. Power Del., Vol. 25, No. 2, 723-733, Apr. 2010.
doi:10.1109/26.996069        Google Scholar

19. Lazaropoulos, A. G. and P. G. Cottis, "Broadband transmission via underground medium-voltage power lines - Part I: Transmission characteristics," IEEE Trans. Power Del., Vol. 25, No. 4, 2414-2424, Oct. 2010.
doi:10.1109/MCOM.2008.4557044        Google Scholar

20. Zimmermann, M. and K. Dostert, "A multipath model for the powerline channel," IEEE Trans. Commun., Vol. 50, No. 4, 553-559, Apr. 2002.        Google Scholar

21. Galli, S. and O. Logvinov, "Recent developments in the standardization of power line communications within the IEEE," IEEE Commun. Mag., Vol. 46, No. 7, 64-71, Jul. 2008.        Google Scholar

22. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley, New York, 1994.
doi:10.1109/JSAC.2006.874423

23. Faria, J. A. B., Multiconductor Transmission-Line Structures: Modal Analysis Techniques, Wiley, New York, 1994.
doi:10.1109/JSAC.2006.874399

24. Sartenaer, T. and P. Delogne, "Deterministic modelling of the (shielded) outdoor powerline channel based on the multiconductor transmission line equations," IEEE J. Sel. Areas Commun., Vol. 24, No. 7, 1277-1291, Jul. 2006.        Google Scholar

25. Amirshahi, P. and M. Kavehrad, "High-frequency characteristics of overhead multiconductor power lines for broadband communications," IEEE J. Sel. Areas Commun., Vol. 24, No. 7, 1292-1303, Jul. 2006.        Google Scholar

26. Sartenaer, T. and P. Delogne, "Powerline cables modelling for broadband communications," Proc. IEEE Int. Conf. Power Line Communications and Its Applications, 331-337, Malmo, Sweden, Apr. 2001.        Google Scholar

27. Sartenaer, T., "Multiuser communications over frequency selective wired channels and applications to the powerline access network ,", Ph.D. Dissertation, Univ. Catholique Louvain, Louvain-la -Neuve, Belgium, Sep. 2004. [Online]. Available: http://www.tele.ucl.ac.be/~ts/P .
doi:10.1109/JSAC.2006.874428        Google Scholar

28. Calliacoudas, T. and F. Issa, "Multiconductor transmission lines and cables solver," an e±cient simulation tool for plc channel networks development," IEEE Int. Conf. Power Line Communications and Its Applications, Athens, Greece, Mar. 2002.
doi:10.1109/TPWRD.2009.2014278        Google Scholar

29. Galli, S. and T. Banwell, "A deterministic frequency-domain model for the indoor power line transfer function," IEEE J. Sel. Areas Commun., Vol. 24, No. 7, 1304-1316, Jul. 2006.
doi:10.1109/61.568254        Google Scholar

30. Perez, A., A. M. Sanchez, J. R. Regue, M. Ribo, R. Aquilue, P. Rodriguez-Cepeda, and F. J. Pajares, "Circuital and modal characterization of the power-line network in the PLC band," IEEE Trans. Power Del., Vol. 24, No. 3, 1182-1189, Jul. 2009.        Google Scholar

31. D'Amore, M. and M. S. Sarto, "A new formulation of lossy ground return parameters for transient analysis of multiconductor dissipative lines," IEEE Trans. Power Del., Vol. 12, No. 1, 303-314, Jan. 1997.
doi:10.1109/15.494615        Google Scholar

32. Amirshahi, P., "Broadband access and home networking through powerline networks,", Ph.D. Dissertation, Pennsylvania State Univ., University Park -PA, May 2006. [Online]. Available: http://etda.libraries.psu, edu/theses/approved/WorldWideIndex-/ETD-1205/index.html.
doi:10.1109/15.494616        Google Scholar

33. D'Amore, M. and M. S. Sarto, "Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range - Part I: Single conductor configuration," IEEE Trans. Electromagn. Compat., Vol. 38, No. 2, 127-138, May 1996.        Google Scholar

34. D'Amore, M. and M. S. Sarto, "Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range - Part II: Multi-conductor configuration," IEEE Trans. Electromagn. Compat., Vol. 38, No. 2, 139-149, May 1996.        Google Scholar

35. OPERA1, D44: Report presenting the architecture of plc system, the electricity network topologies, the operating modes and the equipment over which PLCaccess system will be installed and IST Integr. Project No. 507667, " ,", Dec. 2005. [Online]. Available: http://www.ist-opera.org/opera1/downloads/D44 Architecture PLC.zip.        Google Scholar

36. US Department of Defence, Military Handbook. Grounding, Bonding, and Shielding for Electronic Equipments and Facilities. Vol. 1: Basic Theory Washington, DC, Tech. Rep., and ADA239565, , Dec. 1987. [Online], Available:http://www.wbdg.org/ccb/FEDMIL/hdbk419 vol1.pdf.
doi:10.1109/TEMC.2007.897143

37. Stallcup, J. G., Stallcup's Electrical Grounding and Bonding Simplified, 2005 Edition, Jones & Bartlett, Boston, MA, 2005.

38. Theethayi, N., "Electromagnetic interference in distributed outdoor electrical systems, with an emphasis on lightning interaction with electrified railway network,", Ph.D. Dissertation, Uppsala Univ., Uppsala, Sweden-Sep. 2005. [Online]. Available: http://uu.diva-portal, org/smash/get/diva2:166746/FULLTEXT01.        Google Scholar

39. Theethayi, N., Z. Mazloom, and R. Thottappillil, "Technique for reducing transient voltages in multiconductor-shielded cables," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 434-440, May 2007.        Google Scholar

40. Van der Wielen, P. C. J. M., "On-line detection and location of partial discharges in medium-voltage power cables,", Ph.D. Dissertation, Tech. Univ. Eindhoven, Eind-hoven, the Netherlands, Apr. 2005. [Online], Available: http://alexandria.tue.nl/extra2/200511097.pdf.
doi: --- Either ISSN or Journal title must be supplied.        Google Scholar

41. Van der Wielen, P. C. J. M., E. F. Steennis, and P. A. A. F. Wouters, "Fundamental aspects of excitation and propagation of on-line partial discharge signals in three-phase medium voltage cable systems,", Vol. 10, No. 4, 678-688, Aug. 2003.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

42. Ofcom, Compatibility of VDSL & PLT with radio services in the range 1.6MHz to 30MHz Ofcom, Oct. 2002. [Online], , Available: http://www.ofcom.org.uk/static/archive/ra/topics/interference-/documents/twg-finalreport.pdf.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

43. Veen, J., "On-line signal analysis of partial discharges in medium voltage power cables ," Available: http://alexandria.tue.nl/extra2/200511099.pdf, Ph.D. Dissertation, Tech. Univ. Eindhoven, Eindhoven-the Netherlands, Apr. 2005. [Online].
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

44. Theethayi, N., R. Thottappillil, M. Paolone, C. A. Nucci, and F. Rachidi, "External impedance and admittance of buried horizontal wires for transient studies using transmission line analysis," IEEE Trans. Dielectr. Electr. Insul., Vol. 14, No. 3, 751-761, Jun. 2007.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

45. Rachidi, F. and S. V. Tkachenko, Electromagnetic Field Interaction with Transmission Lines: From Classical Theory to HF Radiation Effects, WIT Press, Southampton, UK, 2008.

46. Issa, F., D. Chaffanjon, E. P. de la Bathie, and A. Pacaud, "An efficient tool for modal analysis transmission lines for PLC networks development," IEEE Int. Conf. Power Line Communications and Its Applications, Athens, Greece, Mar. 2002.        Google Scholar

47. Wedepohl, L. M. and D. J. Wilcox, "Transient analysis of underground power transmission systems. System-model and wave propagation characteristics ," Proc. Inst. Elect. Eng., Vol. 120, No. 2, 253-260, Feb. 1973.        Google Scholar

48. Dostert, K., "Powerline Communications," Prentice-Hall, Upper Saddle River, NJ, 2001.        Google Scholar

49. "High frequency characteristics of medium voltage XLPE power cables,", Ph.D. Dissertation, KTH Royal Inst. Technol., Stockholm, Sweden-Nov. 2005. [Online]. Available:, http://kth.diva-portal.org/smash/get/diva2:14437/FULLTEXT01.
doi:10.1109/TPWRD.2005.848774        Google Scholar

50. Clark, F. M., Insulating Materials for Design and Engineering Practice, Wiley, New York, 1962.

51. Xu, C., L. Zhou, J. Y. Zhou, and S. Boggs, "High frequency properties of shielded power cable - Part 1: Overview of mechanism," IEEE Electr. Insul. Mag., Vol. 21, No. 6, 24-28, Nov./Dec. 2005.        Google Scholar

52. Gustavsen, B., J. A. Martinez, and D. Durbak, "Parameter determination for modeling system transients - Part II: Insulated cables," IEEE Trans. Power Del., Vol. 20, No. 3, 2045-2050, Jul. 2005.
doi: --- Either ISSN or Journal title must be supplied.        Google Scholar

53. Galanis, L. K., H. T. Anastassiu, and S. A. Kotsopoulos, "Wide band, accurate estimation for the primary parameters of the NA2XCWY underground cable," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 314-318, Pisa, Italy, Mar. 2007.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

54. Grassi, F. and S. A. Pignari, "Data-transmission characteristics of power cables with star-quad cross-section," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 401-406, Pisa, Italy, Mar. 2007.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

55. Andreou, G. T. and D. P. Labridis, "Electrical parameters of low-voltage power distribution cables used for power-line communications," IEEE Trans. Power Del., Vol. 22, No. 2, 879-886, Apr. 2007.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

56. Andreou, G. T., E. K. Manitsas, D. P. Labridis, P. L. Katsis, F. N. Pavlidou, and P. S. Dokopoulos, "Finite element characterization of LV power distribution lines for high frequency communication signals," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 109-113, Kyoto, Japan, Mar. 2003.
doi:10.1109/TPWRD.2007.900296        Google Scholar

57. Dickinson, J. and P. Nicholson, "Calculating the high frequency transmission line parameters of power cables," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 127-133, Essen, Germany, Apr. 1997.
doi:10.1109/TPWRD.2007.910987        Google Scholar

58. Breien, O. and I. Johansen, "Attenuation of traveling waves in single-phase high-voltage cables," Proc. Inst. Elect. Eng., Vol. 118, 787-793, Jun. 1971.
doi:10.1109/TPWRD.2008.916739        Google Scholar

59. Andreou, G. T. and D. P. Labridis, "Experimental evaluation of a low-voltage power distribution cable model based on a finite-element approach," IEEE Trans. Power Del., Vol. 22, No. 3, 1455-1460, Jul. 2007.
doi: --- Either ISSN or Journal title must be supplied.        Google Scholar

60. Anatory, J. and N. Theethayi, "On the efficacy of using ground return in the broadband power-line communications-A transmission-line analysis," IEEE Trans. Power Del., Vol. 23, No. 1, 132-139, Jan. 2008.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

61. Anatory, J., N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, "An experimental validation for broadband power-line communication (BPLC) model," IEEE Trans. Power Del., Vol. 23, No. 3, 1380-1383, Jul. 2008.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

62. Galli, S., "Exact conditions for the symmetry of a loop," IEEE Commun. Lett., Vol. 4, No. 10, 307-309, Oct. 2000.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

63. Banwell, T. and S. Galli, "A new approach to the modeling of the transfer function of the power line channel," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 319-324, Malmo, Sweden, Apr. 2001.
doi: --- Either ISSN or Journal title must be supplied.        Google Scholar

64. Schelkunoff, S. A., "Electromagnetic Waves," Van Nostrand, Princeton, NJ, 1943.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

65. Papagiannis, G. and P. Dokopoulos, "A simplified real frequency independent modal transformation for overhead line switching transient computations," Europ. Trans. on Electrical Power, Vol. 5, No. 5, 307-314, Sep./Oct. 1995.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

66. Wedepohl, L. M., "Application of the solution of traveling-wave phenomena in polyphase system," Proc. Inst. Elect. Eng., Vol. 110, No. 12, 2200-2212, Dec. 1963.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

67. Mugala, G., R. Eriksson, U. Gafvert, and P. Pettersson, "Measurement technique for high frequency characterization of semiconducting materials in extruded cables," IEEE Trans. Dielectr. Electr. Insul., Vol. 11, No. 3, 471-480, Jun. 2004.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

68. Mugala, G., R. Eriksson, and P. Pettersson, "Dependence of XLPE insulated power cable wave propagation characteristics on design parameters," IEEE Trans. Dielectr. Electr. Insul., Vol. 14, No. 2, 393-399, Apr. 2007.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

69. Mugala, G., R. Eriksson, and P. Pettersson, "Comparing two measurement techniques for high frequency characterization of power cable semiconducting and insulating materials," IEEE Trans. Dielectr. Electr. Insul., Vol. 13, No. 4, 712-716, Aug. 2006.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.        Google Scholar

70. , , , Nexans Deutschland Industries GmbH & Co. KG-catalogue LV underground power cables distribution cables, Feb. 2011.

71. , , , Elkabel Bulgaria-catalogue cables and wires, Feb. 2010. [Online] , Available: http://www-en.elma-bg.com/files/Elkabel en.pdf.

72. Tele-Fonika Kable GmbH, Cables and wires, , 2008. [Online]. Available: http://www.jauda.com/upload file/Katalogi/citi-/Telefonika/tfb2008.pdf .

73. Zimmermann, M. and K. Dostert, "A multi-path signal propagation model for the power line channel in the high frequency range," Proc. IEEE Int. Symp. Power Line Communications and Its Applications, 45-51, Lancaster, UK, Mar. 1999.        Google Scholar

74. Brown, P. A., "Evaluation of the screening efficiency at HF of low voltage electricity distribution cables with a concentric metallic sheath by the application of surface transfer impedance methods ," IEEE Int. Conf. Power Line Communications and Its Applications, Athens, Greece, Mar. 2002.        Google Scholar

75. Faria, J. A. B., "Application of Clarke's transformation to the modal analysis of asymmetrical single-circuit three-phase line configurations," Europ. Trans. on Electrical Power, Vol. 10, No. 4, 225-231, Jul./Aug. 2000.        Google Scholar

76. Meng, H., S. Chen, Y. L. Guan, C. L. Law, P. L. So, E. Gunawan, and T. T. Lie, "Modeling of transfer characteristics for the broadband power line communication channel," IEEE Trans. Power Del., Vol. 19, No. 3, 1057-1064, Jul. 2004.        Google Scholar

77. Theethayi, N., Y. Baba, F. Rachidi, and R. Thottappillil, "On the choice between transmission line equations and full-wave Maxwell's equations for transient analysis of buried wires," IEEE Trans. Electromagn. Compat., Vol. 50, No. 2, 347-357, May 2008.        Google Scholar

78. Schelkunoff, S. A., "The electromagnetic theory of coaxial transmission lines and cylindrical shields," J. Bell Syst. Tech., Vol. 13, 532-579, Oct. 1934.        Google Scholar

79. Pollaczek, F., "Uber das feld einer unendlich langenwechsel stromdurchflossenen einfachleitung," Elek. Nachr. Tech., Vol. 3, No. 9, 339-360, 1926.        Google Scholar

80. Sunde, E. D., Earth Conduction Effects in the Transmission Systems, Van Nostrand, New York, 1949.

81. Davis, P. J., Circulant Matrices, Wiley, New York, 1979.

82. Vance, E. F., Coupling to Cable Shields , Wiley, New York, 1978.

83. Banwell, T. and S. Galli, "A novel approach to accurate modeling of the indoor power line channel - Part I: Circuit analysis and companion model," IEEE Trans. Power Del., Vol. 20, No. 2, Part 1, 655-663, Apr. 2005.        Google Scholar

84. Anatory, J., N. Theethayi, and R. Thottappillil, "Power-line communication channel model for interconnected networks - Part II: Multiconductor system," IEEE Trans. Power Del., Vol. 24, No. 1, 124-128, Jan. 2009.        Google Scholar

85. Aquilue, R., "Power line communications for the electrical utility: Physical layer design and channel modeling,", Ph.D. Dissertation, Univ. Ramon Llull, Enginyeria - I Arquitectura La Salle, Barcelona, Spain, Jul. 2008. [Online]., Available: http://www.tesisenxarxa.net/TDX-0721108-150034/.        Google Scholar

86. Cataliotti, A., A. Daidone, and G. Tine', "Power line communication in medium voltage systems: Characterization of MV cables," IEEE Trans. Power Del., Vol. 23, No. 4, 1896-1902, Oct. 2008.        Google Scholar

87. Tang, M. and M. Zhai, "Research of transmission parameters of four-conductor cables for power line communication," Proc. Int. Conf. on Computer Science and Software Engineering, Vol. 5, 1306-1309, Wuhan, China, Dec. 2008.        Google Scholar

88. OPERA1, D5: Pathloss as a function of frequency, distance and network topology for various LV and MV European powerline networks. IST Integrated Project , , No. 507667, Apr. 2005. [Online]. Available: http://www.ist-opera.org/opera1/downloads/D5/D5 Pathloss.pdf.

89. Prasad, T. V., S. Srikanth, C. N. Krishnan, and P. V. Ramakrishna, "Wideband characterization of low voltage outdoor powerline communication channels in India," Proc. IEEE Int. Conf. Power Line Communications and Its Applications, 359-364, Malmo, Sweden, Apr. 2001.        Google Scholar

90. Issa, F., D. Chaffanjon, and A. Pacaud, "Radiated emission associated with power line communications on low voltage buried cable," Proc. IEEE Int. Conf. Power Line Communications and Its Applications, 191-196, Malmo, Sweden, Apr. 2001.        Google Scholar