Vol. 31
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-04
Analytical Study of Wide-Band Bandpass Filters Based on Wire-Bonded Multiconductor Transmission Lines with LH Behaviour
By
Progress In Electromagnetics Research Letters, Vol. 31, 1-13, 2012
Abstract
This paper presents a design methodology of wide-band bandpass filters based on short-circuited multi-conductor transmission lines with bonding wires between alternated strips. General design guidelines, based on analytical equations, are derived and a left-handed behaviour of the multiconductor structure is inferred and studied. Analytical equations are assessed by means of full-wave electromagnetic simulations and experimental work. A very good agreement between theoretical results and measurements is achieved, that allows both the design and performance analysis of filters without the need for costly electromagnetic simulations. In addition, the equations presented yield a compact design of the filter with a left-handed behavior.
Citation
Juan-Jose Sanchez-Martinez, and Enrique Marquez-Segura, "Analytical Study of Wide-Band Bandpass Filters Based on Wire-Bonded Multiconductor Transmission Lines with LH Behaviour," Progress In Electromagnetics Research Letters, Vol. 31, 1-13, 2012.
doi:10.2528/PIERL12012504
References

1. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antennas Propag., Vol. 52, No. 5, 1159-1166, May 2004.
doi:10.1109/TAP.2004.827249

2. Lu, W., Q. Zhu, J. Zhu, and S. Xu, "Design of bandpass filter with left-handed transmission line and highpass prototype," Asia-Pacific Conference Proceedings Microwave Conference Proceedings, Vol. 3, 4-7, Dec. 2005.

3. Luo, M., Z. Xu, Z. Chen, H. Nie, and L. Yu, "A novel ultra-wideband (UWB) bandpass filter using mim crlh transmission line structure," 8th International Symposium on Antennas, Propagation and EM Theory, 690-693, Nov. 2008.

4. Kahng, S. and J. H. Ju, "Realized metamaterial CRLH bandpass filter for UHF-band WLAN with harmonics suppressed," IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components, 98-101, Dec. 2008.
doi:10.1109/IMWS.2008.4782271

5. Mishra, V., R. Chaudhary, K. Srivastava, and A. Biswas, "Compact two pole bandpass filter using symmetrical composite right/left handed transmission line with vias," IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 1-5, Nov. 2010.

6. Shin, E. C., C.-M. Shin, C.-H. Lee, J.-S. Park, and S. Kahng, "Low band UWB BPF using CRLH-TL metamaterial structure," IEEE International Conference on Ultra-wideband (ICUWB), 499-502, Sep. 2011.
doi:10.1109/ICUWB.2011.6058894

7. Caloz, C. and I. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-Interscience, 2006.

8. Safwat, A. M. E. and T. M. Abuelfadl, "Coupled lines from filter to composite right/left handed-cells," Progress In Electromagnetics Research B, Vol. 26, 451-469, 2010.
doi:10.2528/PIERB10092809

9. Abdelaziz, A. F., T. M. Abuelfadl, and O. L. Elsayed, "Realization of composite right/left-handed transmission line using coupled lines," Progress In Electromagnetics Research, Vol. 92, 299-315, 2009.
doi:10.2528/PIER09040305

10. Sánchez-Martínez, J. J., E. Márquez-Segura, P. Otero, and C. Camacho-Peñalosa, "Artificial transmission line with left/right-handed behavior based on wire bonded interdigital capacitors," Progress In Electromagnetics Research B, Vol. 11, 245-264, 2009.
doi:10.2528/PIERB08120804

11. Myoung, S.-S., Y. Lee, and J.-G. Yook, "Bandwidth-compensation method for miniaturized parallel coupled-line filters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 7, 1531-1538, Jul. 2007.
doi:10.1109/TMTT.2007.900310

12. Lee, S. and Y. Lee, "Generalized miniaturization method for coupled-line bandpass filters by reactive loading," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 9, 2383-2391, Sep. 2010.
doi:10.1109/TMTT.2010.2058281

13. Ahn, H.-R., K. Min, D. Kang, S. Hong, and B. Kim, "Coupling-compensated 180˚ phase shift coupled-line filters terminated in arbitrary impedances," Asia-Pacific Microwave Conference, 649-652, Dec. 2006.

14. Lin, X. Q., P. Su, Y. Fan, and Z. B. Zhu, "Improved CRLH-TL with arbitrary characteristic impedance and its application in hybrid ring design," Progress In Electromagnetics Research, Vol. 124, 249-263, 2012.
doi:10.2528/PIER11112303

15. Kuo, J.-T., C.-Y. Fan, and S.-C. Tang, "Dual-wideband bandpass filters with extended stopband based on coupled-line and coupled three-line resonators," Progress In Electromagnetics Research, Vol. 124, 1-15, 2012.
doi:10.2528/PIER11120103

16. Cui, D., Y. Liu, Y. Wu, S. Li, and C. Yu, "A compact bandstop filter based on two meandered parallel-coupled lines," Progress In Electromagnetics Research, Vol. 121, 271-279, 2011.
doi:10.2528/PIER11061902

17. Liu, G.-Q., L.-S. Wu, and W.-Y. Yin, "A compact microstrip rat-race coupler with modified lange and t-shaped arms," Progress In Electromagnetics Research, Vol. 115, 509-523, 2011.

18. Ou, W., "Design equations for an interdigitated directional coupler," IEEE Trans. Microw. Theory Tech., Vol. 23, No. 2, 253-255, Feb. 1975.
doi:10.1109/TMTT.1975.1128534

19. Presser, A., "Interdigitated microstrip coupler design," IEEE Trans. Microw. Theory Tech., Vol. 26, No. 10, 801-805, Oct. 1978.
doi:10.1109/TMTT.1978.1129489

20. Pozar, D., Microwave Engineering, 2nd Ed., Wiley, New York, 1998.

21. Kirschning, M. and R. Jansen, "Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 1, 83-90, Jan. 1984.
doi:10.1109/TMTT.1984.1132616