Vol. 31
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-11
Novel Nano-Antenna System Design Using Photonic Spin in a Panda Ring Resonator
By
Progress In Electromagnetics Research Letters, Vol. 31, 75-87, 2012
Abstract
A novel nano-antenna system design using photonic spin in a PANDA ring resonator is proposed. This photonic spins are generated by a soliton pulse within a PANDA ring, in which the transverse electric (TE) and a transverse magnetic (TM) fields are generated. The magnetic field is introduced by using an aluminum plate coupling to the microring resonator, in which the spin-up and spin-down states are induced, where finally, the photonic dipoles are formed. In operation, the dipole oscillation frequency is controlled by a soliton power, coupling coefficients, and ring radii. The obtained results have shown that THz frequency source can be generated by the proposed system. The advantage of proposed system is that the simple and compact nano-antenna with high power pulse source can be fabricated, which can generate and detecte the THz frequency in a single system.
Citation
Nopparat Thammawongsa, Narongchai Moongfangklang, Somsak Mitatha, and Preecha P. Yupapin, "Novel Nano-Antenna System Design Using Photonic Spin in a Panda Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 31, 75-87, 2012.
doi:10.2528/PIERL12012706
References

1. Altug, H., A. A. Yanik, R. Adato, S. Aksu, A. Artar, and M. Huang, "Plasmonics for ultrasensitive biomolecular nanospectroscopy," 2010 International Conference on Optical MEMS and Nanophotonics (OPT MEMS), 63-64, Aug. 9-12, 2010.        Google Scholar

2. Pal, A., A. Mehta, M. E. Marhic, K. C. Chan, and K. S. Teng, "Microresonator antenna for biosensing applications," IET Micro & Nano Letters, Vol. 6, No. 8, 665-667, 2011.
doi:10.1049/mnl.2011.0320        Google Scholar

3. Balocco, C., S. R. Kasjoo, X. Lu, L. Zhang, Y. Alimi, S. Winnerl, P. Bao, Y. Luo, K. Lee, and A. M. Song, "Novel terahertz nanodevices and circuits," 10th IEEE International Conference 10th IEEE International Conference , 1176-1179, Nov. 1-4, 2010..        Google Scholar

4. Kawakami, A., S. Saito, and M. Hyodo, "Fabrication of nano-antennas for superconducting infrared detectors," IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, 632-635, 2011.
doi:10.1109/TASC.2010.2102330        Google Scholar

5. Bareiss, M., B. N. Tiwari, A. Hochmeister, G. Jegert, U. Zschieschang, H. Klauk, B. Fabel, G. Scarpa, G. Koblmuller, G. H. Bernstein, W. Porod, and P. Lugli , "Nano antenna array for terahertz detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2751-2757, 2011.
doi:10.1109/TMTT.2011.2160200        Google Scholar

6. Bailey, R., "Electromagnetic wave energy converter,", United State Patent, Vol. 3760257, 1973.        Google Scholar

7. Alvin, M., "Device for conversion of light power to electric power,", United States Patent, Vol. 4445050, Apr. 24, 1984.        Google Scholar

8. Lin, G. H., R. Abdu, and J. O. M. Bockris, "Investigation of resonance light absorption and rectification by subnanostructures," Journal of Applied Physics, Vol. 80, No. 1, 565-586, 1996.
doi:10.1063/1.362762        Google Scholar

9. Sendur, K. and E. Baran, "Near-field optical power transmission of dipole nano-antennas," Applied Physics B: Lasers and Optics, Vol. 96, No. 2, 325-335, 2009.
doi:10.1007/s00340-009-3505-0        Google Scholar

10. Cetin, A. E., A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, "Monopole antenna arrays for optical trapping, spectroscopy, and sensing," Applied Physics Letters, Vol. 98, No. 11, 111110-111110-3, 2011.
doi:10.1063/1.3559620        Google Scholar

11. Pissuwan, D., S. M. Valenzuela, and M. B. Cortie, "Prospects for gold nanorod particles in diagnostic and therapeutic applications," Biotechnology and Genetic Engineering Reviews, Vol. 25, No. 1, 93-112, 2008.
doi:10.5661/bger-25-93        Google Scholar

12. Bakker, R. M., V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, "Nanoantenna array-induced fluorescence enhancement and reduced lifetimes," New Journal of Physics, Vol. 10, No. 12, 125022-125038, 2008.
doi:10.1088/1367-2630/10/12/125022        Google Scholar

13. Guo, H., T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, "Optical resonances of bowtie slot antennas and their geometry and material dependence," Optics Express, Vol. 16, No. 11, 7756-7766, 2008.
doi:10.1364/OE.16.007756        Google Scholar

14. Taminiau, T. H., F. D. Stefani, and N. F. van Hulst, "Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna," Optics Express, Vol. 16, No. 14, 10858-10866, 2008.
doi:10.1364/OE.16.010858        Google Scholar

15. Cao, P., X. Zhang, W. J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-reflection and phase control coatings via surface plasmons modes of asymmetric structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010        Google Scholar

16. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
doi:10.2528/PIER07030301        Google Scholar

17. Moscatelli, A., "Gold nanoparticles afloat," Nature Materials, Vol. 11, No. 1, 8, 2011.
doi:10.1038/nmat3217        Google Scholar

18. Hovel, S., A. Bischoff, N. C. Gerhardt, M. R. Hofmann, T. Ackemann, A. Kroner, and R. Michalzik, "Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers," Applied Physics Letters, Vol. 92, No. 4, 041118-041118-3, 2008.
doi:10.1063/1.2839381        Google Scholar

19. Mitatha, S., C. Teeka, J. Ali, and P. P. Yupapin, "Soliton spin and wave-particle duality," Optics and Photonics Letters (OPL), Vol. 4, No. 2, 63-73, 2011.
doi:10.1142/S1793528811000202        Google Scholar

20. Sarapat, K., N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, "Novel dark-bright optical solitons conversion system and power amplification," Optics Engineering, Vol. 48, No. 4, 045004-7, 2009.        Google Scholar

21. Glomglome, S., I. Srithanachai, C. Teeka, M. Mitatha, S. Niemcharoen, and P. P. Yupapin, "Optical spin generated by a soliton pulse in an add-drop filter for optoelectronic and spintronic use," Optics & Laser Technology, Vol. 44, No. 5, 1294-1297, 2012.
doi:10.1016/j.optlastec.2011.11.052        Google Scholar

22. Xu, Q., D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Optics Express, Vol. 16, No. 6, 4309-4315, 2008.
doi:10.1364/OE.16.004309        Google Scholar

23. Udomwach, K., K. Sarapat, and P. P. Yupapin, "Dynamic modulated Gaussian pulse propagation within the double PANDA ring resonator system ," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1818-1821, 2010.
doi:10.1002/mop.25315        Google Scholar

24. Neamen, D. A., Semiconductor Physics and Devices, Tsinghua University Press, New York, 2003.

25. King, R., C. W. Harrison, and Jr., "The distribution of current along a symmetrical center-driven antenna," Proceedings of the IRE, Vol. 31, 548-567, 1943.
doi:10.1109/JRPROC.1943.233034        Google Scholar

26. Pocklington, H. C., "Electrical oscillations in wires," Proceedings of the Cambridge Philosophical Society, Vol. 9, No. 7, 324-332, 1897.        Google Scholar

27. Biagioni, P., J. S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics, Vol. 75, No. 2, 24402-24441, 2012.
doi:10.1088/0034-4885/75/2/024402        Google Scholar

28. Balanis, C. A., "Antenna theory: A review," Proceedings of the IEEE, Vol. 80, 7-22, 1992.
doi:10.1109/5.119564        Google Scholar

29. Rakic, A. D., A. B. Djuriic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, Vol. 37, No. 22, 5271, 1998.
doi:10.1364/AO.37.005271        Google Scholar

30. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1038/nature01937        Google Scholar

31. Huang, J. S., T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Letters, Vol. 9, No. 5, 1897-1902, 2009.
doi:10.1021/nl803902t        Google Scholar