Vol. 40
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-04-19
Contour- and Grid-Based Algorithm for Mixed Triangular-Rectangular Planar Mesh Generation
By
Progress In Electromagnetics Research B, Vol. 40, 201-220, 2012
Abstract
A mesh generation algorithm for the Method of Moments (MoM) is described. The algorithm, named CGSM, can mesh arbitrary planar shapes described with line segments and circular arcs into mixed triangular and rectangular cells. CGSM creates contours of the meshed shape and uses them to provide edge mesh (denser mesh near edges), creates an adaptive grid and uses it to insert axis-aligned rectangles in the interior, and finally, triangulates the remaining area (the Delaunay condition is imposed on the triangulation). CGSM is compared to two commercial applications (Designer® and IE3D™) on the example of a 2-GHz hybrid ring coupler. The same simulation results are obtained. However, with CGSM, simulation time is significantly reduced.
Citation
Tomasz A. Linkowski Piotr M. Slobodzian , "Contour- and Grid-Based Algorithm for Mixed Triangular-Rectangular Planar Mesh Generation," Progress In Electromagnetics Research B, Vol. 40, 201-220, 2012.
doi:10.2528/PIERB12030106
http://www.jpier.org/PIERB/pier.php?paper=12030106
References

1. Linkowski, T. A. and P. M. Slobodzian, "Automatic mesh generation for planar structures based on contours, adaptive ," EuCAP: 5th Eur. Conf. Ant.,", 1562-1566, Rome, 2011.

2. Linkowski, T. A. and P. M. Slobodzian, "Comparison of automatic planar mesh generation schemes facilitating edge meshing," CEM: 8th Int. Conf. Computation in Electromagnetics, 170-171, Wroclaw, Poland, 2011.

3. Kolundzija, B. M. and A. Djordjevic, Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Artech House, Norwood, 2002.

4. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.
doi:10.1109/PROC.1967.5433

5. Harrington, R. F., "Matrix methods for field problems," IEEE Proceedings, Vol. 55, No. 2, 136-149, 1967.
doi:10.1109/TAP.1982.1142818

6. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. on Ant. and Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142841

7. Newman, H. and P. Tulyathan, "A surface patch model for polygonal plates," IEEE Trans. on Ant. and Propag., Vol. 30, No. 7, 588-593, 1982.
doi:10.1109/TMAG.1983.1062893

8. Lindholm, D., "Automatic triangular mesh generation on surface of polyhedra," IEEE Trans. on Magn., Vol. 19, 2539-2542, 1983.
doi:10.1109/22.245681

9. Sercu, J., N. Fache, F. Libbrecht, and D. de Zutter, "Full-wave space-domain analysis of open microstrip discontinuities including the singular current-edge behavior," IEEE Trans. on Microwaves Theory and Tech., Vol. 41, No. 9, 1581-1588, 1993.
doi:10.1109/20.717795

10. Tsuboi, H., T. Asahara, F. Kobayashi, and T. Misaki, "Adaptive triangular mesh generation for boundary element method in 3D electrostatic problems," IEEE Trans. on Magn., Vol. 34, No. 5, 3379-3382, 1998.

11. Moreno, J., M. J. Algar, I. Gonzalez Diego, and F. Catedra, "A new mesh generator optimized for electromagnetic analysis," EuCAP: 5th Eur. Conf. Ant. Propag., 1734-1738, Rome, 2011.

12. George, P.-L. and H. Borouchaki, Delaunay Triangulation and Meshing: Application to Finite Elements, Hermes, 1998.
doi:10.1002/pse.135

13. Lo, S. H., "Finite element mesh generation and adaptive meshing," Progress Struct. Eng. Mater., Vol. 4, No. 4, 381-399, 2002.

14. Ruiz-Gironez, E., X. Roca, and J. Serrate, "The receding front method applied to hexahedral mesh generation of exterior domains," Engineering with Computers, published online, 1-18, 2011.
doi:10.2528/PIERB10012110

15. Martini, E., G. Carli, and S. Maci, "A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion," Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010.

16. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, New Jersey, 2005.

17. Berg, M., O. Cheong, M. Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd Ed., Springer, Berlin, 2008.
doi:10.1109/TMTT.2004.823541

18. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. on Microwaves Theory and Tech., Vol. 52, No. 3, 798-804, 2004.
doi: --- Either ISSN or Journal title must be supplied.