1. Ward, J., "Space-time adaptive processing for airborne radar," Technical Report 1015, MIT Lincoln Laboratory, Lexington, MA, Dec. 1994. Google Scholar
2. Guerci, J. R., Space-time Adaptive Processing for Radar, Artech House, 2003.
3. Melvin, W. L., "A STAP overview," IEEE Aerosp. Electron. Syst. Mag., Vol. 19, No. 1, 19-35, 2004.
doi:10.1109/MAES.2004.1263229 Google Scholar
4. Aïssa , B., M. Barkat, B. Atrouz, M. C. E. Yagoub, and M. A. Habib, "An adaptive reduced rank STAP selection with staggered PRF, effect of array dimensionality," Progress In Electromagnetics Research C, Vol. 6, 37-52, 2009.
doi:10.2528/PIERC08121601 Google Scholar
5. Gong, Q. Y. and Z. D. Zhu, "Study STAP algorithm on interference target detect under nonhomogeneous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
doi:10.2528/PIER09101502 Google Scholar
6. Maria, S. and J. J. Fuchs, "Application of the global matched filter to STAP data an efficient algorithmic approach," Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 14-19, 2006. Google Scholar
7. Selesnick, I. W., S. U. Pillai, K. Y. Li, and B. Himed, "Angle-Doppler processing using sparse regularization," Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 2750-2753, 2010.
doi:10.1109/ICASSP.2010.5496219 Google Scholar
8. Sun, K., H. Zhang, G. Li, H. Meng, and X. Wang, "A novel STAP algorithm using sparse recovery technique," Proc. IGARSS, 336-339, 2009. Google Scholar
9. Sun, K., H. Meng, Y. Wang, and X. Wang, "Direct data domain STAP using sparse representation of clutter spectrum," Signal Process., Vol. 91, No. 9, 2222-2236, 2011.
doi:10.1016/j.sigpro.2011.04.006 Google Scholar
10. Parker, J. T. and L. C. Potter, "A Bayesian perspective on sparse regularization for STAP post-processing," Proc. IEEE Radar Conf, 1471-1475, May 2010. Google Scholar
11. Yang, Z., R. C. de Lamare, and X. Li, "L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar," IEEE Trans. on Signal Process., Vol. 60, No. 2, 674-686, 2012.
doi:10.1109/TSP.2011.2172435 Google Scholar
12. Yang, Z., R. C. de Lamare, and X. Li, "Sparsity-aware STAP algorithms for airborne radar based on conjugate gradient techniques," Proc. Sensor Signal Process. for Defence Conf., London, UK, 2011. Google Scholar
13. Yang, Z., R. C. de Lamare, and X. Li, "L1 regularized STAP algorithm with a generalized sidelobe canceler architecture for airborne radar," Proc. IEEE Workshop on Statist. Signal Process., 329-332, 2011. Google Scholar
14. Liu, Y. and Q. Wan, "Total difference based partial sparse LCMV beamformer," Progress In Electromagnetics Research Letters, Vol. 18, 97-103, 2010.
doi:10.2528/PIERL10092705 Google Scholar
15. Zhang, Y., Q. Wan, and A.-M. Huang, "Localization of narrow band sources in the presence of mutual coupling via sparse solution finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
doi:10.2528/PIER08090703 Google Scholar
16. Yang, M. and G. Zhang, "Compressive sensing based parameter estimation for monostatic MIMO noise radar," Progress In Electromagnetics Research Letters, Vol. 30, 133-143, 2012.
doi:10.2528/PIERL12010702 Google Scholar
17. Ke, W. and L. Wu, "Sparsity-based multi-target direct positioning algorithm based on joint-sparse recovery," Progress In Electromagnetics Research C, Vol. 27, 99-114, 2012.
doi:10.2528/PIERC11110704 Google Scholar
18. Gui, G., N. Zheng, N. Wang, A. Mehbodniya, and F. Adachi, "Compressive estimation of cluster-sparse channels," Progress In Electromagnetics Research C, Vol. 24, 251-263, 2011.
doi:10.2528/PIERC11092005 Google Scholar
19. Needell, D. and J. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comp. Harmonic Anal., Vol. 26, 301-321, 2008. Google Scholar
20. Tropp, J. A. and J. Wright, "Computational methods for sparse solution of linear inverse problems," Proc. of IEEE, Vol. 98, No. 6, 948-958, 2010.
doi:10.1109/JPROC.2010.2044010 Google Scholar
21. Wright, S. J., R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. on Signal Process., Vol. 57, No. 7, 2479-2493, 2009.
doi:10.1109/TSP.2009.2016892 Google Scholar
22. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imag. Sci., Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542 Google Scholar
23. Gorodnitsky, I. F. and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. on Signal Process., Vol. 45, No. 3, 600-616, 1997.
doi:10.1109/78.558475 Google Scholar
24. 57, 1, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Trans. on Signal Process., Vol. 57, No. 1, 289-301, 2009.
doi:10.1109/TSP.2008.2007606 Google Scholar