1. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Diffraction of hybrid modes in a cylindrical cavity resonator by a transverse circular slot with a plane anisotropic dielectric layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502 Google Scholar
2. Wang, J., S. Qu, H. Ma, J. Hu, Y. Yang, and X. Wu, "A dielectric resonator-based route to left-handed metamaterials," Progress In Electromagnetics Research B, Vol. 13, 133-150, 2009.
doi:10.2528/PIERB09011103 Google Scholar
3. Zhou, Y., E. Li, G. Guo, Y. Gao, and T. Yang, "Broadband complex permittivity measurement of low loss materials over large temperature ranges by stripline resonator cavity using segmentation calculation method," Progress In Electromagnetics Research B, Vol. 113, 143-160, 2011. Google Scholar
4. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466
5. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Measurement Science and Technology, Vol. 17, 55-70, 2006.
doi:10.1088/0957-0233/17/6/R01 Google Scholar
6. Yeh, Y.-S., J.-T. Lue, and Z.-R. Zheng, "Measurement of the dielectric constant of metallic nanoparticles embedded in a paraffin rod at microwave frequencies," IEEE Transaction on Microwave Theory and Techniques, Vol. 53, No. 5, 2005. Google Scholar
7. Collin, R. E., "Field theory of guided waves," IEEE Antennas and Propagation Society, 1960. Google Scholar
8. Liu, J., C. Chen, H. Lue, and J. Lue, "A new method developed in measuring the dielectric constants of metallic nanoparticles by a microwave double-cavity dielectric resonator," IEEE Microwave and Wireless Components Letters, Vol. 13, 181-183, 2003.
doi:10.1109/LMWC.2003.811668 Google Scholar
9. Dester, G. D., E. J. Rothwell, M. J. Havrilla, and M. W. Hyde, "Error analysis of a two-layer method for the electromagnetic characterization of conductor-backed absorbing material using an open-ended waveguide probe," Progress In Electromagnetics Research B, Vol. 26, 1-21, 2010.
doi:10.2528/PIERB10080506 Google Scholar
10. Krupka, J., A. P. Gregory, O. C. Rochard, R. N. Clarke, B. Riddle, and J. Baker-Jarvis, "Uncertainty of complex permittivity measurements by split-post dielectric resonator technique," Journal of the European Ceramic Society, Vol. 21, 2673-2676, 2001.
doi:10.1016/S0955-2219(01)00343-0 Google Scholar
11. Joint Committee for Guides in Metrology Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement, 1st Ed., BIPM, Sèvres-France, 2008, Available at: http://www.bipm.org/en/publications/guides/gum.html, http://www.bipm.org/en/publications/guides/gum.html..
12. Joint Committee for Guides in Metrology Evaluation of Measurement Data Supplement 1 to the Guide to the Expression of Uncertainty in Measurement Propagation of Distributions Using a Monte Carlo Method, 1st Ed., BIPM, Sèvres-France, 2008, Available at: http://www.bipm.org/en/publications/guides/gum.html, http://www.bipm.org/en/publications/guides/gum.html..
13. Azpúrua, M. A., C. Tremola, and E. Páez, "Comparison of the gum and monte carlo methods for the uncertainty estimation in electromagnetic compatibility testing," Progress In Electromagnetics Research B, Vol. 34, 125-144, 2011. Google Scholar
14. Koch, K. R., "Evaluation of uncertainties in measurements by Monte-Carlo simulations with an application for laserscanning," Journal of Applied Geodesy, Vol. 2, 67-77, 2008.
doi:10.1515/JAG.2008.008 Google Scholar
15. Jing, H., M.-F. Huang, Y.-R. Zhong, B. Kuang, and X.-Q. Jiang, "Estimation of the measurement uncertainty based on quasi monte-carlo method in optical measurement," Proceedings of the International Society for Optical Engineering, 2007. Google Scholar
16. Khu, S. T. and M. G. Werner, "Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling," Hydrology and Earth System Sciences, Vol. 7, No. 5, 680-690, 2003.
doi:10.5194/hess-7-680-2003 Google Scholar
17. Andræ, A. S. G., P. MÄuler, J. Anderson, and J. Liu, "Uncertainty estimation by monte carlo simulation applied to life cycle inventory of cordless phones and microscale metallization processes," IEEE Transactions on Electronics Packaging Manufacturing, Vol. 27, No. 4, 233-245, 2004.
doi:10.1109/TEPM.2004.843163 Google Scholar
18. Schuëller, G. I., "On the treatment of uncertainties in structural mechanics and analysis," Journal Computers and Structures, Vol. 85, No. 5-6, 235-243, 2007.
doi:10.1016/j.compstruc.2006.10.009 Google Scholar
19. Paez, E., C. Tremola, and M. Azpúrua, "A proposed method for quantifying uncertainty in RF immunity testing due to eut presence," Progress In Electromagnetics Research B, Vol. 29, 175-190, 2011.
doi:10.2528/PIERB11020802 Google Scholar
20. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, Inc., 1941.
21. Pozar, D. M., Microwave Engineer, John Wiley & Sons, 2005.
22. Willink, R., "On using the Monte Carlo method to calculate uncertainty intervals," Metrologia, Vol. 43, L39-L42, 2006.
doi:10.1088/0026-1394/43/6/N02 Google Scholar