Vol. 30
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-06-08
High Gain Linear Polarization Switchable Planar Array Antenna
By
Progress In Electromagnetics Research C, Vol. 30, 93-103, 2012
Abstract
In this paper, a linear polarization switchable planar array antenna with enhanced gain and better crosspolarization is proposed. The proposed array antenna consists of a fed patch and four parasitic patches. Four switching diodes are loaded on the corners of the fed patch. The boundary condition of the fed patch is controlled by using the ON/OFF condition of the diodes, and the polarization angle of the array antenna can be orthogonally switched to ±45° with better than -22 dB of crosspolarization. The simulated gain of the array antenna is remarkably increased to 12 dBi by using four parasitic patches surrounding the fed patch. For matching the resonance frequency of the parasitic patches with the fed patch, a square slot is formed at the center of each parasitic patch. The characteristics of the proposed array antenna are investigated by the FDTD simulation method. The array antenna is fabricated and the experiment is carried out. Both the simulation and the experimental results of the proposed array antenna demonstrate the polarization switching functionality successfully with the enhanced gain in S-band.
Citation
Md. Azad Hossain, Eisuke Nishiyama, Ichihiko Toyoda, and Masayoshi Aikawa, "High Gain Linear Polarization Switchable Planar Array Antenna," Progress In Electromagnetics Research C, Vol. 30, 93-103, 2012.
doi:10.2528/PIERC12041816
References

1. Nishiyama, E., M. Aikawa, and S. Egashira, "FDTD analysis of stacked microstrip antenna with high gain," Progress In Electromagnetic Research, Vol. 33, 29-43, 2001.
doi:10.2528/PIER00091501

2. Yang, F. and Y. Rahmat-Samii, "Patch antennas with switchable slots (PASS) in wireless communications: Concepts, design and application," IEEE Trans. on Antennas and Propagation, Vol. 47, No. 2, 13-29, 2005.

3. Qian, Y. and T. Itoh, "Progress in active integrated antennas and their applications," IEEE Trans. Micro. Theory Tech., Vol. 46, No. 11, 1891-1900, 1998.
doi:10.1109/22.734506

4. Aikawa, M., E. Nishiyama, and T. Tanaka, "Advanced utilization of resonant ¯elds and its application to the push-push oscillators and recon¯gurable antennas," IEICE Trans. Electron., Vol. E89C, No. 12, 1798-1805, 2006.
doi:10.1093/ietele/e89-c.12.1798

5. Fries, M. K., M. Grani, and R. Vahideck, "Reconfigurable slot antenna with switchable polarization," Microw. Wirel. Compon. Lett., Vol. 13, No. 11, 490-492, 2003.
doi:10.1109/LMWC.2003.817148

6. Schubert, D. H., F. G. Farrar, A. Sindoris, and S. T. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Trans. on Antennas and Propagation, Vol. 29, No. 1, 118-123, 2003.
doi:10.1109/TAP.1981.1142546

7. Haskins, P. M. and J. S. Dahele, "Polarization, Phase and frequency agility and polarization diversity," Asia-Pacific Microwave Conf. Proc., 747-750, 2000.

8. Simons, R. N., D. Chun, and L. P. B. Katechi, "Polarization recon¯gurable patch antenna using microelectromechanical system (MEMS) actuators," Proc., 2002 IEEE Antenna Propagation Symp., Vol. 2, 6-9, 2002.

9. Tokunaga, T., M. Yamamoto, T. Nojima, and K. Itoh, "Polarization switchable microstrip array antenna using proximity feeding technique ," IET Electronic Letters, Vol. 39, No. 22, 1569-1570, 2003.
doi:10.1049/el:20031019

10. Nishiyama, E., M. Aikawa, and S. Sasaki, "Polarization switchable slot-ring array antenna," IET Microw. Antennas Propag., Vol. 2, No. 3, 236-241, 2008.
doi:10.1049/iet-map:20060174

11. Gosalia, K. and G. Lazzi, "Reduced size, dual-polarized microstrip patch antenna for wireless communications," IEEE Trans. on Antennas and Propagation, Vol. 51, No. 9, 2182-2186, 2003.
doi:10.1109/TAP.2003.816344

12. Hu, S., J. Pang, and J. Qiu, "A compact polarization diversity MIMO microstrip patch antenna array with dual slant polarizations," IEEE International Symposium on Antennas and Prop., 2009.

13. Wang, X., W. Chen, Z. Feng, and H. Zhang, "Compact dual-polarized antenna combining printed monopole and half-slot antenna for MIMO applications," IEEE International Symposium on Antennas and Prop., 2009.

14. He, Y., X. Zhao, and J. Li, "A compact high gain microstrip array antenna," Progress In Electromagnetic Research, Vol. 33, 29-43, 2001.

15. Kaya, A., "High gain rectangular broad band microstrip antenna with embedded negative capacitor and chip resistor," Microwave and Optical Technology Letters, Vol. 78, 421-436, 2008.

16. Wang, S., F. Chang, S.-W. Su, K. Chao, W. Chen, and C.-F. Tu, "Compact broadband patch antenna with high gain for 2.4 GHz WLAN operation," IEEE International Symposium on Antennas and Prop., 2010.

17. Kim, J., J. K. Kim, Y. Kim, and H. Lee, "High gain antenna using parasitic shorted annular patch structure," Proceedings of Asia-Paci¯c Microwave Conference, 2007.

18. Zelenchuk, D. E. and V. F. Fusco, "Planar high-gain WLAN PCB antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1314-1316, 2009.
doi:10.1109/LAWP.2009.2037718

19. Nishiyama, E. and M. Aikawa, "Wide-band and high-gain microstrip antenna with thick parasitic patch substrate," IEEE International Symposium on Antennas and Prop., 2004.

20. Nishiyama, E. and M. Aikawa, "Polarization controllable microstrip antenna," IEEE International Symposium on Antennas and Prop., 2005.

21. Hossain, M. A., E. Nishiyama, and M. Aikawa, "Gain enhanced linear polarization switchable microstrip array antenna," IEEE International Symposium on Antennas and Prop., 2010.

22. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley-Interscience, 2002.
doi:10.1002/0471221112

23. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, 302-307, 1966.

24. Kampitaki , D. G., A. T. Hatzigaidas, A. I. Papastergiou, and Z. D. Zaharis, "On the design of a dual-band unequal power divider useful for mobile communications," Electrical Engineering , Vol. 89, No. 6, 443-450, June 2007.
doi:10.1007/s00202-006-0024-4

25. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 68, 15-33, 2007.

26. Zaharis, Z. D., D. G. Kampitaki, P. I. Lazaridis, A. I. Papastergiou, A. T. Hatzigaidas, P. B. Gallion, "Improving the radiation characteristics of a base station antenna array using a particle swarm optimizer," Microwave and Optical Technology Letters, Vol. 49, No. 7, 1690-1698, 2007.
doi:10.1002/mop.22505

27. Wang, W.-B., Q. Feng, and D. Liu, "Synthesis of thinned linear and planar antenna arrays using binary PSO algorithm," Progress In Electromagnetics Research, Vol. 127, 371-378, 2012.
doi:10.2528/PIER12020301

28. Deligkaris, K. V., Z. D. Zaharis, D. G. Kampitaki, S. K. Goudos,I. T. Rekanos, M. N. Spasos, "Thinned planar array design using boolean PSO with velocity mutation," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1490-1493, 2009.
doi:10.1109/TMAG.2009.2012687

29. Goudos, S. K., Z. D. Zaharis, D. G. Kampitaki, I. T. Rekanos, and C. S. Hilas, "Pareto optimal design of dual band base station antenna arrays using multi-objective particle swarm optimization antenna arrays using multi-objective particle swarm optimization," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1522-1525, 2009.
doi:10.1109/TMAG.2009.2012695