1. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequencyband," IEEE Trans. on Microw. Theory and Tech., Vol. 47, No. 10, 2059-2074, Nov. 1999. Google Scholar
2. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling redection between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 120, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415 Google Scholar
3. Yang, F. and Y. R. Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.
4. Karnfelt, C., P. Hallbjorner, H. Zirath, and A. Alping, "High gain active microstrip antenna for 60-GHz WLAN/WPAN applications," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 6, 2593-2603, Jun. 2006.
doi:10.1109/TMTT.2006.872923 Google Scholar
5. Ohnimus, F., I. Ndip, E. Engin, S. Guttowski, and H. Reichl, "Study on shielding effectiveness of mushroom-type electromagnetic bandgap structures in close proximity to patch antennas," Proc. LAPC, 737-740, Loughborough, UK, 2009. Google Scholar
6. Nikolic, M., A. Djordjevic, and A. Nehorai, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Trans. on Antennas and Propag., Vol. 53, No. 11, 3469-3476, Nov. 2005.
doi:10.1109/TAP.2005.858847 Google Scholar
7. Tan, M. N. M., T. A. Rahman, S. K. A. Rahim, M. T. Ali, and M. F. Jamlos, "Antenna array enhancement using mushroom-like electromagnetic band gap (EBG)," Proc. 4th EuCAP, 1-5, Barcelona, Spain, Apr. 2010. Google Scholar
8. Coulombe, M., S. F. Koodiani, and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Trans. on Antennas and Propag., Vol. 58, No. 4, 1076-1086, Apr. 2010.
doi:10.1109/TAP.2010.2041152 Google Scholar
9. Yang, F. and Y. R. Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. on Antennas and Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983 Google Scholar
10. Li, L., B. Li, H. X. Liu, and C. H. Liang, "Locally resonant cavity cell model for electromagnetic band gap structures," IEEE Trans. on Antennas and Propag., Vol. 54, No. 10, 90-100, Jan. 2006.
doi:10.1109/TAP.2005.861532 Google Scholar
11. Tang, M.-C., S.-Q. Xiao, S.-S. Gao, G. Jian, and B.-Z. Wang, "Mutual coupling suppressing based on a new type electric resonant SRRs in microstrip array," Acta Phys. Sin., Vol. 59, No. 3, 1851-1856, 2010. Google Scholar
12. Tang, M.-C., S.-Q. Xiao, J. Guan, Y.-Y. Bai, S.-S. Gao, and B.-Z.Wang, "Composite metamaterial enabled excellent performance of microstrip antenna array," Chin. Phys. B,, Vol. 19, No. 7, 074214, 2010.
doi:10.1088/1674-1056/19/7/074214 Google Scholar
13. Tang, M.-C., S. Q. Xiao, B. Z. Wang, J. Guan, and T. W. Deng, "Improved performance of a microstrip phased array using broadband and ultra-low-loss metamaterial slabs," IEEE Antennas and Propagation Magazine, Vol. 53, No. 6, 31-41, Dec. 2011.
doi:10.1109/MAP.2011.6157712 Google Scholar
14. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs)," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 862-865, 2011.
doi:10.1109/LAWP.2011.2165931 Google Scholar
15. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. on Antennas and Propag., Vol. 58, No. 9, 2894-2902, Sep. 2010.
doi:10.1109/TAP.2010.2052560 Google Scholar
16. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators ," IEEE Microwave and Wireless Components Letters, Vol. 14, 280-282, 2004.
doi:10.1109/LMWC.2004.828029 Google Scholar
17. Abdalla, M. A., M. A. Fouad, H. A. Elregeily, and A. A. Mitkees, "Wideband negative permittivity metamaterial for size reduction of stopband filter in antenna applications," Progress In Electromagnetics Research C, Vol. 25, 55-66, 2012.
doi:10.2528/PIERC11082509 Google Scholar
18. Khan, S. N., X. G. Liu, L. X. Shao, and Y. Wang, "Complementary split ring resonators of large stop bandwidth," Progress In Electromagnetics Research Letters, Vol. 14, 127-132, 2010.
doi:10.2528/PIERL10033105 Google Scholar
19. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876, 2010.
doi:10.1109/LAWP.2010.2074175 Google Scholar
20. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Artificial complementary resonators for mutual coupling reduction in microstrip antennas ," Proceedings of the 41st European Microwave Conference, EuMA, 10-13, Manchester, UK, Oct. 2011. Google Scholar
21. Lu, H. M., J. X. Zhao, and Z. Y. Yu, "Design and analysis of a novel electromagnetic bandgap structure for suppressing simultaneous switching noise," Progress In Electromagnetics Research C, Vol. 30, 81-91, 2012. Google Scholar
22. Bitzer, A., A. Ortner, H. Merbold, T. Feurer, and M. Walther, "Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle," Optics Express, Vol. 19, No. 3, 2537, Optical Society of America, OSA, Jan. 31, 2011.
doi:10.1364/OE.19.002537 Google Scholar
23. Baena, J. D., J. Bonache, F. MartÍn, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. GarcÍa, I. Gil, M. F. Portillo, and M. Sorol, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/TMTT.2005.845211 Google Scholar
24. Tran, C.-M., H. Hafdallah-Ouslimani, L. Zhou, A. C. Priou, H. Teillet, J.-Y. Daden, and A. Ourir, "High impedance surfaces based antennas for high data rate communications at 40 GHz," Progress In Electromagnetic Research C, Vol. 13, 217-299, 2010.
doi:10.2528/PIERC10040404 Google Scholar
25. Ouslimani, H. H., X. Han, and T. Zhang, "Analysis and reduction of electromagnetic coupling interferences in microstrip antenna arrays," Advanced Electromagnetics Symposium, AES, 16-18, Paris, France, Apr. 2012. Google Scholar
26. , , , http://www.ansys.com/Products/Simulation+Technology/Elect-romagnetics/High-Performance+Electronic+Design/ANSYS+H-FSS.
27. , , , http://www.cst.com/content/products/mws/overview.aspx.
28. , , , RT/duroid 6006/6010 Dada sheet: http://www.rogerscorp.com/documents/612/acm/RT-duroid-6006-6010-laminate-data-sheet.aspx..