Vol. 33
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-07-20
Frequency-Tunable Bandpass Filters with Constant Absolute Bandwidth and Improved Linearity
By
Progress In Electromagnetics Research Letters, Vol. 33, 131-140, 2012
Abstract
This paper presents a frequency-tunable bandpass filter with constant absolute bandwidth and improved linearity. The proposed resonator is composed of an open-ended transmission line with back-to-back varactor diodes loaded at one end. The back-to-back varactor diodes are used to enhance the linearity of the filter, which is better than that of the single varactor counterparts. A mixed electric and magnetic coupling scheme is utilized to control the overall coupling coefficients so that the absolute bandwidth can be kept constant when the frequency is tuned. For validation, two frequency-tuning filters with 30-MHz and 44-MHz absolute bandwidth are implemented. The experimental and simulated results are presented to verify the proposed design.
Citation
Feng Lin Yu, Xiu Zhang, and Yi Bin Zhang, "Frequency-Tunable Bandpass Filters with Constant Absolute Bandwidth and Improved Linearity," Progress In Electromagnetics Research Letters, Vol. 33, 131-140, 2012.
doi:10.2528/PIERL12061006
References

1. Li, L. and D. Uttamchandani, "Demonstration of a tunable RF MEMS bandpass filter using silicon foundry process," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 405-413, 2009.
doi:10.1163/156939309787604355

2. Sekar, V., M. Armendariz, and K. Entesari, "A 1.2--1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 866-876, Apr. 2011.
doi:10.1109/TMTT.2011.2109006

3. Mi, X. Y., O. Toyoda, S. Ueda, and F. Nakazawa, "Miniaturized microwave tunable bandpass filters on high-k LTCC," Proc. Asia-Pac. Microw. Conf. (APMC), 139-142, 2010.

4. Wang, S. and R. X. Wang, "A tunable bandpass filter using Q-enhanced and semi-passive inductors at S-band in 0.18 CMOS," Progress In Electromagnetics Research B, Vol. 28, 55-73, 2011.

5. Kumngern, M. and K. Dejhan, "Electronically tunable voltage-mode universal filter with three-input single-output," Internal Conference on Electronic Devices, Systems and Applications (ICEDSA), 7-10, Apr. 2010.
doi:10.1109/ICEDSA.2010.5503113

6. Long, J., C. Z. Li, W. Z. Cui, J. T. Huangfu, and L. X. Ran, "A tunable microstrip bandpass filter with two independently adjustable transmission zeros," IEEE Microw. Wireless Compon. Lett., Vol. 21, 74-76, Feb. 2011.

7. Wang, X., P. Bao, T. J. Jackson, and M. J. Lancaster, "Tunable microwave filters based on discrete ferroelectric and semiconductor varactors," IEEE Trans. in Proc. Asia-Pac. Microw. Conf., Vol. 5, No. 7, 776-782, May 2011.

8. Courreges, S., Y. Li, Z. Zhao, K. Choi, A. Hunt, and J. Papapolymerou, "Two-pole X-band-tunable ferroelectric filters with tunable center frequency, fractional bandwidth, and return loss," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 2872-2881, Dec. 2009.
doi:10.1109/TMTT.2009.2034046

9. Courreges, S., Y. Li, Z. Zhao, K. Choi, A. Hunt, and J. Papapolymerou, "A low loss X-band quasi-elliptic ferroelectric tunable filter," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 4, 203-205, Apr. 2009.
doi:10.1109/LMWC.2009.2015494

10. Zhu, Y., R. W. Mao, and C. S. Tsai, "A varactor and FMR-tuned wideband band-pass filter module with versatile frequency tunability," IEEE Trans. Magn., Vol. 47, No. 2, 284-288, Feb. 2011.
doi:10.1109/TMAG.2010.2070836

11. Zhu, Y., G. Qiu, and C. S. Tsai, "A magnetically- and electrically-tunable microwave phase shifter using YIG/GGG thin film," J. of Applied Physics, Vol. 111, 2012.

12. Rebeiz, G. M., RF MEMS: Theory, Design, and Technology, John Wiley & Sons, Feb. 2003.

13. Liu, B., F. Wei, H. Zhang, X. Shi, and H. Lin, "A tunable bandpass filter with switchable bandwidth," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2--3, 223-232, 2011.
doi:10.1163/156939311794362704

14. Chen, J. X., J. Shi, and Z. H. Bao, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.2528/PIER10100808

15. Chung, M. S., I. S. Kim, and S. W. Yun, "Varactor-tuned hairpin bandpass filter with enhanced stopband performance," Asia-Pacific Microw. Conf., 645-648, Dec. 2006.
doi:10.1109/APMC.2006.4429503

16. Matthaei, G. L., "Narrow-band, fixed-tuned, and tunable bandpass filters with zig-zag hairpin-comb resonators," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1214-1219, Apr. 2003.
doi:10.1109/TMTT.2003.809631

17. Pistono, E., L. Duvillaret, J. M. Duchamp, A. Vilcot, and P. Ferrari, "Improved and compact 0.7 GHz tune-all bandpass filter," Electron. Lett., Vol. 43, No. 3, 165-166, Feb. 2007.
doi:10.1049/el:20073085

18. Park, S. J., K. V. Caekenberghe, and G. M. Rebeiz, "A miniature 2.1-GHz low loss microstrip filter with independent electric and magnetic coupling," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 496-498, Oct. 2004.
doi:10.1109/LMWC.2004.836803

19. Liu, B., F. Wei, Q. Y. Wu, and X. W. Shi, "A tunable bandpass filter with constant absolute bandwidth," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1596-1604, 2011.
doi:10.1163/156939311797164819

20. Zhang, X. Y., C. H. Chan, Q. Xue, and B. J. Hu, "RF tunable bandstop filters with constant bandwidth based on a doublet configuration," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 1257-1265, Feb. 2012.
doi:10.1109/TIE.2011.2158038

21. Li, Y. C. and Q. Xue, "Tunable balanced bandpass filter with constant bandwidth and high common-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 10, 2452-2460, Oct. 2011.
doi:10.1109/TMTT.2011.2161325

22. El-Tanani, M. A. and G. M. Rebeiz, "A two-pole two-zero tunable filter with improved linearity," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 4, 830-839, Apr. 2009.
doi:10.1109/TMTT.2009.2015124

23. Ou, Y. C. and G. M. Rebeiz, "Lumped-element fully tunable bandstop filters for cognitive radio applications," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 10, 2461-2468, Oct. 2011.
doi:10.1109/TMTT.2011.2160965

24. Meyer, R. G. and M. L. Stephens, "Distortion in variable-capacitance diodes," IEEE Journal of Solid-State Circuits, Vol. 10, No. 1, 47-54, Feb. 1975.
doi:10.1109/JSSC.1975.1050553