1. Nurgaliev, T., S. Miteva, A. P. Jenkins, and D. D. Hughes, "Investigation of MW characteristics of HTS microstrip and coplanar resonators with ferrite thin-film components," IEEE Trans. Microwave Theory Tech., Vol. 51, 33-40, Jan. 2003.
doi:10.1109/TMTT.2002.806944 Google Scholar
2. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electron. Lett., Vol. 29, No. 12, 1048-1049, Jun. 1993.
doi:10.1049/el:19930699 Google Scholar
3. Lindell, I. V., "Variational method for the analysis of lossless bi-isotropic (nonreciprocal chiral) waveguides," IEEE Trans. Microwave Theory Tech., Vol. 40, 402-405, Feb. 1992.
doi:10.1109/22.120115 Google Scholar
4. Viitanen, A. J. and I. V. Lindell, "Chiral slab polarization transformer for aperture antennas," IEEE Trans. Antennas Propagat., Vol. 46, 1395-1397, Sep. 1998.
doi:10.1109/8.719989 Google Scholar
5. Kluskens, M. S. and E. H. Newman, "A microstrip line on a chiral substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, 1889-1891, Nov. 1991. Google Scholar
6. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE Antennas and Propagation Society Newsletter, Vol. 30, 6-12, Oct. 1988. Google Scholar
7. Krowne, C. M., "Electromagnetic properties of nonreciprocal composite chiral-ferrite media," IEEE Trans. Antennas Propagat., Vol. 41, 1289-1293, Sep. 1993.
doi:10.1109/8.247756 Google Scholar
8. Krowne, C. M., "Full-wave spectral Green's function integral-equation calculation of coplanar ferroelectric thin-film transmission structures," Microwave Opt. Technol. Lett., Vol. 26, 187-192, 2000.
doi:10.1002/1098-2760(20000805)26:3<187::AID-MOP15>3.0.CO;2-E 3.0.CO;2-E' target='_blank'> Google Scholar
9. Krowne, C. M., "Theoretical considerations for finding anisotropic permittivity in layered ferroelectric/ferromagnetic structures from full-wave electromagnetic simulations," Microwave Opt. Technol. Lett., Vol. 28, 63-69, 2001.
doi:10.1002/1098-2760(20010105)28:1<63::AID-MOP18>3.0.CO;2-Q Google Scholar
10. Krowne, C. M., M. Daniel, S. W. Kirchoefer, and J. M. Pond, "Anisotropic permittivity and attenuation extraction from propagation constant measurements using an anisotropic full-wave Green's function solver for coplanar ferroelectric thin-film devices ," IEEE Trans. Microwave Theory Tech., Vol. 50, 537-548, Feb. 2002.
doi:10.1109/22.982233 Google Scholar
11. Hanson, G. W., "A numerical formulation of dyadic Green's functions for planar bianisotropic media with application to printed transmission lines ," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 144-151, Jan. 1996.
doi:10.1109/22.481396 Google Scholar
12. Cloete, J. H., M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Comm., Vol. 55, No. 4, 223-239, Jul. 2001. Google Scholar
13. Demir, V., A. Elsherbeni, D. Worasawate, and E. Arvas, "A graphical user interface (GUI) for plane wave scattering from a conducting, dielectric or a chiral sphere,", Software at ACES web site: http://aces.ee.olemiss.edu, Syracuse, Sep. 2004 . Google Scholar
14. Tsalamengas, J. L., "Interaction of electromagnetic waves with general bianisotropic slabs," IEEE Trans. Microwave Theory Tech., Vol. 4, 1870-1878, Oct. 1992. Google Scholar
15. Demir, V., "Electromagnetic scattering from three-dimensional chiral objects using the FDTD method,", Ph.D. Dissertation, Syracuse University, 2004. Google Scholar
16. Alu, A., F. Bilotti, and L. Vegni, "Extended method of line procedure for the analysis of microwave components with bianisotropic inhomogeneous media," IEEE Trans. Antennas Propagat., Vol. 51, 1582-1589, Jul. 2003. Google Scholar
17. Yagli, A. F., "Electromagnetic scattering from three-dimensional gyrotropic objects using the transmission line modeling (TLM) method,", Ph.D. Dissertation, Syracuse University, 2006. Google Scholar
18. Demir, A., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propagat., Vol. 53, 3374-3384, Oct. 2005. Google Scholar
19. Bilotti, F., A. Toscano, and L. Vegni, "FEM-BEM formulation for the analysis of cavity-backed patch antennas on chiral substrates," IEEE Trans. Antennas Propagat., Vol. 51, 306-311, Feb. 2003.
doi:10.1109/TAP.2003.809076 Google Scholar
20. Valor, L. and J. Zapata, "An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials," IEEE Trans. Microwave Theory Tech., Vol. 44, 291-296, Feb. 1996.
doi:10.1109/22.481579 Google Scholar
21. Valor, L. and J. Zapata, "A simplified formulation to analyze inhomogeneous waveguide with lossy chiral media using the finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 46, 185-187, Feb. 1998.
doi:10.1109/22.660985 Google Scholar
22. Mei, C., M. Hasanovic, J. K. Lee, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomoge-neous bianisotropic body," PIERS Online, Vol. 3, No. 5, 680-684, 2007.
doi:10.2529/PIERS061005231254 Google Scholar
23. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
24. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, 77-85, Jan. 1984.
doi:10.1109/TAP.1984.1143193 Google Scholar
25. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. 32, 276-281, Mar. 1984.
doi:10.1109/TAP.1984.1143304 Google Scholar
26. Carvalho, S. A. and L. S. Mendes, "Scattering of EM waves by inhomogeneous dielectrics with the use of the method of moments and 3-D solenoidal basis functions," Microwave and Optical Technology Letters, Vol. 23, No. 1, 42-46, Oct. 1999.
doi:10.1002/(SICI)1098-2760(19991005)23:1<42::AID-MOP12>3.0.CO;2-N Google Scholar
27. Worasawate, D., "Electromagnetic scattering from an arbitrarily shaped three-dimensional chiral body,", Ph.D. Dissertation, Syracuse University, 2002. Google Scholar
28. Hasanovic, M., "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomogeneous chiral body,", Ph.D. Dissertation, Syracuse University, 2006. Google Scholar
29. Zhu, X. Q., Y. L. Geng, and X. B. Wu, "Application of MOM-CGM-FFT method to scattering from three-dimensional anisotropic scatterers," Chinese J. Radio Sci., Vol. 17, No. 3, 209-215, 2002 (in Chinese). Google Scholar
30. Geng, Y., X. Wu, and L. Li, "Analysis of electromagnetic scattering by a plasma anisotropic sphere," Radio Science, Vol. 38, No. 6, 12-1-12-12, Dec. 2003.
doi:10.1029/2003RS002913 Google Scholar
31. Geng, Y. and X. Wu, "A plane electromagnetic wave scattering by a ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 161-179, 2004.
doi:10.1163/156939304323062022 Google Scholar
32. Nie, X. C., N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, "A fast combined field volume integral equation solution to EM scattering by 3-D dielectric objects of arbitrary permittivity and permeability," IEEE Trans. Antennas Propagat., Vol. 54, 961-969, Mar. 2006.
doi:10.1109/TAP.2006.869927 Google Scholar
33. Mendes, L. S. and S. A. Carvalho, "Scattering of EM waves by homogeneous dielectrics with the use of the method of moments and 3D solenoidal basis functions," Microwave and Optical Technology Letters, Vol. 12, No. 6, 327-331, Aug. 1996.
doi:10.1002/(SICI)1098-2760(19960820)12:6<327::AID-MOP7>3.0.CO;2-H Google Scholar
34. Kulkarni, S., R. Lemdiasov, R. Ludwig, and S. Makarov, "Comparison of two sets of low-order basis functions for tetrahedral VIE modeling," IEEE Trans. Antennas Propagat., Vol. 52, 2789-2794, Oct. 2004. Google Scholar