Vol. 34
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-08-13
A Further Investigation on the Performance of the Broadside Coupled Rectangular Split Ring Resonators
By
Progress In Electromagnetics Research Letters, Vol. 34, 1-8, 2012
Abstract
In this paper, a numerical study based on the Finite Element Method (FEM) formulation of Ansoft's High Frequency Structure Simulator (HFSS) is reported to investigate the performance of a conformal Broadside Coupled Rectangular Split Ring Resonators (BC-SRR) of negative effective permeability around a resonant frequency of 1.27 GHz for non-linear polarization applications. The size of the BC-SRR is 15 mm x 15 mm x 0.8 mm on a polyimide substrate with a relative permittivity of 3.5 and a loss tangent of 0.004. The performance of the BC-SRR is characterized in terms of reflection and transmission spectra, effective relative permittivity and permeability, and the dispersion diagram for both flat and twisted profiles. The flat BC-SRR operates over the frequency range from 1.2615 to 1.2842 GHz. The twisted BC-SRR inclusions are investigated at 90°. It has been found that the resonant frequency is changed to 1.1064 GHz and bandwidth becomes from 1.08 GHz to 1.0537 GHz for the twisted profile. Moreover, it is found that the unit cell of the twisted BC-SRR profile is based on two BC-SRRs inclusions. Furthermore, it is found that the twisted profile exhibits negative relative permittivity and permeability simultaneously.
Citation
Taha Ahmed Elwi, "A Further Investigation on the Performance of the Broadside Coupled Rectangular Split Ring Resonators," Progress In Electromagnetics Research Letters, Vol. 34, 1-8, 2012.
doi:10.2528/PIERL12070409
References

1. Niu, J.-X. and X.-L. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.
doi:10.2528/PIER07051802

2. Guo, Y. and R. Xu, "Planar metamaterials supporting multiple left-handed modes," Progress In Electromagnetics Research, Vol. 66, 239-251, 2006.
doi:10.2528/PIER06113001

3. Sabah, C., "Tunable metamaterial design composed of triangular split ring resonator and wire strip for S- and C-microwave bands," Progress In Electromagnetics Research, Vol. 66, 341-357, 2010.

4. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Optical Society of America, Vol. 16, No. 22, 1-14, Oct. 2008.

5. Chern, R. L., "Large magnetic resonance band gaps for split ring structures with high internal fractions," Optical Society of America, Vol. 16, No. 25, 1-7, Dec. 2008.

6. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 33-41, Oct. 2003.

7. Balmaz, P. G. and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," Journal of Applied Physics, Vol. 92, No. 5, 2929-2936, Jun. 2002.
doi:10.1063/1.1497452

8. Marques, R., F. Martin, and M. Sorolla, "Metamaterials with negative parameters: Theory, design and microwave applications," Wiley Series in Microwave and Optical Engineering, Feb. 2008.

9. Bait Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. on Ant. & Prop., Vol. 58, No. 9, 2894-2902, Sep. 2010.
doi:10.1109/TAP.2010.2052560

10. Ansoft's High Frequency Structure Simulator HFSS, 2th version, , 2010, Available: http://www.ansoft.com.
doi:10.1109/TAP.2010.2052560