1. Hall, S. H. and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs, John Wiley & Sons, 2009.
doi:10.1002/9780470423899
2. Bogatin, E., Signal and Power Integrity - Simplified, Pearson Education, 2009.
3. Cockcroft, J. D., "Skin effect in rectangular conductors at high frequencies," Proc. Roy. Soc. London, Vol. A122, 533-542, 1929. Google Scholar
4. Smith, G. R., "Proximity effect in systems of parallel conductors," J. Appl. Phys., Vol. 43, No. 5, 2196-2203, 1972.
doi:10.1063/1.1661474 Google Scholar
5. Berleze, S. L. M. and R. Robert, "Skin and proximity effects in nonmagnetic conductors," IEEE Trans. on Education, Vol. 46, No. 3, 368-372, 2003.
doi:10.1109/TE.2003.814591 Google Scholar
6. Faraji-Dana, R. and Y. Chow, "Edge condition of the field and a.c. resistance of a rectangular strip conductor," IEE Proc., Vol. 137, Pt. H, No. 2, 133-140, 1990. Google Scholar
7. Kiang, J.-F., "Integral equation solution to the skin effect problem in conductor strip of finite thickness," IEEE Trans. on Microwave Theory and Tech., Vol. 39, No. 3, 452-460, 1991.
doi:10.1109/22.75287 Google Scholar
8. Sarkar, T. K. and A. R. Djordjevic, "Wideband electromagnetic analysis of finite-conductivity cylinders," Progress In Electromagnetics Research, Vol. 16, 153-173, 1997.
doi:10.2528/PIER96060200 Google Scholar
9. Antonini, G., A. Orlandi, and C. R. Paul, "Internal impedance of conductors of rectangular cross section," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 7, 979-985, 1999.
doi:10.1109/22.775429 Google Scholar
10. Ymeri, H., B. Nauwelaers, and B. Maex, "Distributed inductance and resistance per-unit-length formulas for VLSI interconnects on silicon substrate," Microwave and Optical Technology Letters, Vol. 30, No. 5, 302-304, 2001.
doi:10.1002/mop.1296 Google Scholar
11. Niknejad, A. M. and R. G. Meyer, "Analysis of eddy-current losses over conductive substrates with applications to monolithic inductors and transformers," IEEE Trans. on Microwave Theory and Tech., Vol. 49, No. 1, 166-176, 2001.
doi:10.1109/22.900004 Google Scholar
12. Tsuchiya, A. and H. Onodera, "Patterned floating dummy fill for on-chip spiral inductor considering the effect of dummy fill," IEEE Trans. on Microwave Theory and Tech., Vol. 56, No. 12, 3217-3222, 2008.
doi:10.1109/TMTT.2008.2007362 Google Scholar
13. Matsuki, M. and A. Matsushima, "Improved numerical method for computing internal impedance of a rectangular conductor and discussions of its high frequency behavior," Progress In Electromagnetics Research M, Vol. 23, 139-152, 2012.
doi:10.2528/PIERM11122105 Google Scholar
14. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.
15. Matsushima, A. and H. Sakamoto, "Application of wire model to calculation of impedance of transmission lines with arbitrary cross sections," Electronics and Communication in Japan (Part II: Electronics), Vol. 85, No. 7, 1-10, 2002.
doi:10.1002/ecjb.10036 Google Scholar
16. Carson, J. R., "Wave propagation in overhead wires with ground return," Bell Sys. Tech. J., Vol. 5, 539-554, 1926.
doi:10.1002/j.1538-7305.1926.tb00122.x Google Scholar
17. Abramowitz, M. and A. Stegun, Handbook of Mathematical Functions, Ch. 12, Dover, New York, 1972.
18. Higgins, T. J., "Formulas for the geometrical mean distance of rectangular areas and line segments," Appl. Phys., Vol. 14, No. 2, 188-195, 1943. Google Scholar
19. Holloway, C. L. and E. F. Kuester, "DC internal inductance for a conductor of rectangular cross section," IEEE Trans. on Electromag. Compat., Vol. 51, No. 2, 338-344, 2009.
doi:10.1109/TEMC.2009.2016104 Google Scholar
20. Heinrich, W., "Comments on `Internal impedance of conductors of rectangular cross section‘," IEEE Trans. on Microwave Theory and Tech., Vol. 49, No. 3, 580-581, 2001.
doi:10.1109/22.910570 Google Scholar
21. Rong, A. and A. C. Cangellaris, "Note on the definition and calculation of the per-unit-length internal impedance of a uniform ," IEEE Trans. on Electromag. Compat., Vol. 49, No. 3, 677-681, 2007.
doi:10.1109/TEMC.2007.903043 Google Scholar
22. Ghione, G. and C. Naldi, "Analytical formulas for coplanar lines in hybrid and monolithic MICs," Electron. Lett., Vol. 20, No. 4, 179-181, 1984.
doi:10.1049/el:19840120 Google Scholar
23. Hasegawa, H., M. Furukawa, and H. Yanai, "Properties of microstrip line on Si-SiO2 system," IEEE Trans. on Microwave Theory and Tech., Vol. 19, No. 11, 869-881, 1971.
doi:10.1109/TMTT.1971.1127658 Google Scholar
24. Milanovic, V., M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, "Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates," IEEE Trans. on Microwave Theory and Tech., Vol. 46, No. 5, 632-640, 1998.
doi:10.1109/22.668675 Google Scholar
25. Eudes, T., B. Ravelo, and M. Louis, "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011. Google Scholar
26. Stratton, J. A., Electromagnetic Theory, Sec. 9.16, McGraw-Hill, NY, 1941.
27. Ilarionov, Y. A., E. A. Bukvarev, I. D. Krotov, and V. I. Naryshkin, "The fundamental electromagnetic wave of a single-wire line in a weakly absorbing medium," J. Commun. Tech. Electron., Vol. 52, No. 2, 140-146, 2007.
doi:10.1134/S1064226907020039 Google Scholar