Vol. 45
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-10-31
A New Approach to Analysis of Induction Motors with Rotor Faults During Startup Based on the Finite Element Method
By
Progress In Electromagnetics Research B, Vol. 45, 269-290, 2012
Abstract
The increasing popularity of a so-called transient motor current signature analysis requires the fault diagnostics parameters which could not be exposed to other factors irrelevant to the fault to make a precise assessment of the failure severity level. This challenging task needs a precise modeling of faulty motor behavior in various operating conditions at different fault severity levels. This paper introduces a new approach to a finite element analysis of an induction motor with broken rotor bars during startup. The approach is based on the principle of superposition and contributes to examination of the fault rotor backward rotating magnetic field and current components produced by such field separating them from stator currents. It gives a new sight on the behavior of a faulty motor during startup for the diagnosis purposes. Further analysis of the simulation data by means of the Extended Park's Vector Approach and the continuous wavelet transform and its experimental validation is also represented in the paper.
Citation
Vladimir Viktorovich Kuptsov, Anvar Sabulkhanovich Sarvarov, and Mikhail Yurievich Petushkov, "A New Approach to Analysis of Induction Motors with Rotor Faults During Startup Based on the Finite Element Method," Progress In Electromagnetics Research B, Vol. 45, 269-290, 2012.
doi:10.2528/PIERB12082916
References

1. Thomson, W. T. and M. Fenger, "Current signature analysis to detect induction motor faults," IEEE Industry Applications Magazine, Vol. 7, No. 4, 26-34, Jul./Aug. 2001.
doi:10.1109/2943.930988        Google Scholar

2. Kliman, G. B. and J. Stein, "Induction motor fault detection via passive current monitoring," Proc. of Int. Conf. Electrical Machines, (ICEM), 13-17, 1990.        Google Scholar

3. Nandi, S. and H. A. Toliyat, "Condition monitoring and fault diagnosis of electrical machines --- A review," Proc. of Industry Applications Conference, Vol. 1, 197-204, 1999.        Google Scholar

4. Kliman, G. B., R. A. Koegl, J. Stein, R. D. Endicott, and M. W. Madden, "Noninvasive detection of broken rotor bars in operating induction motors," IEEE Trans. Energy Convers., Vol. 3, No. 4, 873-879, Dec. 1998.
doi:10.1109/60.9364        Google Scholar

5. Elkasabgy, N. M., A. R. Eastham, and G. E. Dawson, "Detection of broken rotor bars in the cage rotor on an induction machine," IEEE Trans. Ind. Appl., Vol. 28, No. 1, 165-171, Jan./Feb. 1992.
doi:10.1109/28.120226        Google Scholar

6. Bellini, A., F. Filippetti, G. Franceschini, C. Tassoni, and G. B. Kliman, "Quantitative evaluation of induction motor broken bars by means of electrical signature analysis," IEEE Trans. Ind. Appl., Vol. 37, No. 5, 1248-1255, Sep./Oct. 2001.
doi:10.1109/28.952499        Google Scholar

7. Garcia-Perez, A., R. J. Romero-Troncoso, E. Cabal-Yepez, R. A. Osornio-Rios, J. de Jesus Rangel-Magdaleno, and , "Startup current analysis of incipient broken rotor bar in induction motors using high-resolution spectral analysis," Proc. of IEEE Int. Symposium on Diagnostics for Electric Machines, Power Electronics & Drives, 657-663, Sept. 2011.
doi:10.1109/DEMPED.2011.6063694        Google Scholar

8. Kechida, R. and A. Menacer, "DWT wavelet transform for the rotor bars faults detection in induction motor," Proc. of 2nd Int. Conf. on Electric Power and Energy Conversion Systems, 1-5, Nov. 2011.        Google Scholar

9. Keskes, H., A. Braham, and Z. Lachiri, "Broken rotor bar diagnosis in induction machines through Stationary Wavelet Packet Transform under lower sampling rate," Proc. of 1st Int. Conf. on Renewable Energies and Vehicular Technology, 452-459, Mar. 2012.        Google Scholar

10. Riera-Guasp, M., J. A. Antonino-Daviu, M. Pineda-Sanchez, R. Puche-Panadero, and J. Perez-Cruz, "A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform," IEEE Trans. Ind. Electron.,, Vol. 55, No. 12, 4167-4180.
doi:10.1109/TIE.2008.2004378        Google Scholar

11. Douglas, H., P. Pillay, and A. K. Ziarani, "A new algorithm for transient motor current signature analysis using wavelets," IEEE Trans. Ind. Appl., Vol. 40, No. 5, 1361-1368, Sep./Oct. 2004.
doi:10.1109/TIA.2004.834130        Google Scholar

12. Faiz, J. and B.-M. Ebrahimi, "A new pattern for detecting broken rotor bars in induction motors during start-up," IEEE Trans. Magn., Vol. 44, No. 12, 4673-4683, Dec. 2008.
doi:10.1109/TMAG.2008.2002903        Google Scholar

13. Zhang, Z., Z. Ren, and W. Huang, "A novel detection method of motor broken rotor bars based on wavelet ridge," IEEE Trans. Energy Convers., Vol. 18, No. 5, 417-423, Sept. 2003.
doi:10.1109/TEC.2003.815851        Google Scholar

14. Ordaz-Moreno, A., R. de Jesus Romero-Troncoso, J. A. Vite-Frias, J. R. Rivera-Gillen, and A. Garcia-Perez, "Automatic online diagnosis algorithm for broken-bar detection on induction motors based on discrete wavelet transform for FPGA implementation," IEEE Trans. Ind. Electron., Vol. 55, No. 5, 2193-2202, May 2008.
doi:10.1109/TIE.2008.918613        Google Scholar

15. Pineda-Sanchez, M., M. Riera-Guasp, J. A. Antonino-Daviu, J. Roger-Folch, J. Perez-Cruz, and R. Puche-Panadero, "Instantaneous frequency of the left sideband harmonic during the start-up transient a new method for diagnosis of broken bars," IEEE Trans. Ind. Electron., Vol. 56, No. 11, 4557-4570, Nov. 2009.
doi:10.1109/TIE.2009.2026211        Google Scholar

16. Supangat, R., N. Ertugrul, W. L. Soong, D. A. Gray, C. Hansen, and J. Grieger, "Broken rotor bar fault detection in induction motors using starting current analysis," Proc. of European Conf. on Power Electronics and Applications, 1-10, 2005.        Google Scholar

17. Deleroi, W., "Squirrel cage motor with broken bar in the rotor --- Physical phenomena and their experimental assessment," Proc. of Int. Conf. on Electrical Machines, 767-770, 1982.        Google Scholar

18. Riera-Guasp, M., J. A. Antonino-Daviu, J. Roger-Folch, and M. P. Molina Palomares, "The use of the wavelet approximation," IEEE Trans. Ind. Appl., Vol. 44, No. 3, 716-726, May/Jun. 2008.
doi:10.1109/TIA.2008.921432        Google Scholar

19. Sprooten, J., J. Gyselinck, and J. C. Maun, "Local and global effect of a broken bar in induction machines using fundamental electromagnetic laws and finite element simulations," Proc. of IEEE Int. Symposium on Diagnostics for Electric Machines, Power Electronics & Drives, 1-6, Sept. 2005.        Google Scholar

20. Aroui, T., Y. Koubaa, and A. Toumi, "Magnetic coupled circuits modeling of induction machines oriented to diagnostics modeling of induction machines oriented to diagnostics," Leonardo Journal of Sciences, Vol. 7, No. 13, 103-121, Jul./Dec. 2008.        Google Scholar

21. Sprooten, J., J. Gyselinck, J.-C. Maun, and , "Comparison of models of faulty induction motors: Performances and applications," Proc. of IEEE Int. Symposium on Diagnostics for Electric Machines, Power Electronics & Drives, 132-137, Sept. 2007.
doi:10.1109/DEMPED.2007.4393083        Google Scholar

22. Zhang, L. and T. S. Cheang, "Two new approaches to analysis of inner-fault of squirrel-cage rotor for three-phase induction motors," Proc. of 5th Int. Conf. on Electrical Machines and Systems, Vol. 1, 51-55, 2001.        Google Scholar

23. Samonig, M. A., P. Nussbaumer, G. Stojicic, and T. M. Wolbank, "Analysis of rotor fault detection in inverter fed induction machines at no load by means of finite element method," Proc.of 37th Annual Conf. on IEEE Ind. Electron. Society, 1758-1763, Nov. 2011.        Google Scholar

24. Zouzou, S. E., S. Khelif, N. Halem, and M. Sahraoui, "Analysis of induction motor with broken rotor bars using finite element method," Proc. of 2nd Int. Conf. on Electric Power and Energy Conversion Systems, 1-5, Nov. 2011.        Google Scholar

25. Kuptsov, V. V., A. S. Sarvarov, and A. S. Gorzunov, "Development of current signature analysis technique to detect faults in induction motors by oscillograms of unsteady-state machine operation," Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta, Seriya Energetika, Vol. 34, No. 12, 60-67, Jun. 2009 (in Russian).        Google Scholar

26. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping finite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Electromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903        Google Scholar

27. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004        Google Scholar

28. Bouzida, A., O. Touhami, R. Ibtiouen, A. Belouchrani, M. Fadel, and , "Fault diagnosis in industrial induction machines through discrete wavelet transform," IEEE Trans. Ind. Electron., Vol. 58, No. 9, 4385-4395, Sept. 2011.
doi:10.1109/TIE.2010.2095391        Google Scholar

29. Akn, B., S. Choi, U. Orguner, and H. A. Toliyat, "A simple real-time fault signature monitoring tool for motor drive embedded fault diagnosis systems," IEEE Trans. Ind. Electron., Vol. 58, No. 5, 1990-2001, May 2011.
doi:10.1109/TIE.2010.2051936        Google Scholar

30. Cruz, S. M. A. and A. J. Marques Cardoso, "Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park's vector approach," IEEE Trans. Ind. Appl., Vol. 37, No. 5, 1227-1233, Sept./Oct. 2001.
doi:10.1109/28.952496        Google Scholar

31. Daubechies, I., "The wavelet transform, time-frequency localization and signal analysis," IEEE Trans. Information Theory, Vol. 36, No. 5, 961-1005, Sep. 1990.
doi:10.1109/18.57199        Google Scholar

32. Mallat, S., A Wavelet Tour of Signal Processing, Academic, San Diego, CA, 1999.

33. Misiti, M., Y. Misiti, G. Oppenheim, and J. M. Poggi, Wavelet Toolbox, User's Guide for Matlab, MathWorks, Natick, MA, Jun. 2004.

34. Abu-Rub, H., A. Iqbal, S. K. M. Ahmed, J. Guzinski, M. Adamowicz, and M. Rahiminia, "Rotor broken bar diagnostics in induction motor drive using Wavelet packet transform and ANFIS classification," Proc. of Int. Conf. on Electric Machines & Drives Conference, 365-370, May 2011.        Google Scholar

35. Cusido, J., L. Romeral, J. A. Ortega, J. A. Rosero, and A. Garcia Espinosa, "Fault detection in induction machines using power spectral density in wavelet decomposition," IEEE Trans. Ind. Electron., Vol. 55, No. 2, 633-643, Feb. 2008.
doi:10.1109/TIE.2007.911960        Google Scholar

36. Sadeghian, A., Z. Ye, and B. Wu, "Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks," IEEE Trans. Instrum. Meas., Vol. 58, No. 7, 2253-2263, Jul. 2009.
doi:10.1109/TIM.2009.2013743        Google Scholar