1. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements,", Tech. Rep. 1341, NIST, Boulder, CO, USA, 1990.
doi:10.1109/TIM.1970.4313932 Google Scholar
2. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.2528/PIER10101208 Google Scholar
3. Hasar, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.
doi:10.1109/TMTT.2006.881023 Google Scholar
4. Lonnqvist, A., A. Tamminen, J. Mallat, and A. V. Raisanen, "Monostatic reflectivity measurement of radar absorbing materials at 310 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 9, 3486-3491, 2006.
doi:10.1109/MAP.2008.4562276 Google Scholar
5. Collard, G. and Y. Arien, "Recent microwave absorber wall-re°ectivity measurement methods," IEEE Antennas and Propagation Magazine, Vol. 50, No. 2, 140-147, 2008.
doi:10.2528/PIERL11082211 Google Scholar
6. Escot-Bocanegra, D., D. Poyatos-Martnez, I. Montiel-Sanchez, F. M. Saez de Adana, and I. Gonzalez-Diego, "Spherical indoor facility applied to bistatic radar cross section measurements," Progress In Electromagnetics Research Letters, Vol. 26, 181-187, 2011.
doi:10.1109/TMTT.2011.2160198 Google Scholar
7. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. Mariani Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2633-2646, 2011.
doi:10.1016/j.compscitech.2009.11.015 Google Scholar
8. Micheli, D., C. Apollo, R. Pastore, and M. Marchetti, "X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation," Composites Science and Technology, Vol. 70, No. 2, 400-409, 2010.
doi:10.1109/15.709418 Google Scholar
9. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 209-217, 1998.
doi:10.2528/PIERC11122702 Google Scholar
10. Sorrentino, A., L. Mascolo, G. Ferrara, M. Migliaccio, and , "The fractal nature of the electromagnetic field within a reverberating chamber," Progress In Electromagnetics Research C, Vol. 27, 157-167, 2012.
doi:10.1109/TEMC.2011.2106789 Google Scholar
11. Moglie, F. and V. Mariani Primiani, "Analysis of the independent positions of reverberation chamber stirrers as a function of their operating conditions," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 288-295, 2011.
doi:10.1109/TEMC.2012.2186303 Google Scholar
12. Moglie, F. and V. Mariani Primiani, "Numerical analysis of a new location for the working volume inside a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 238-245, 2012.
doi:10.2528/PIER09121610 Google Scholar
13. Hong, J.-I. and C.-S. Huh, "Optimization of stirrer with various parameters in reverberation chamber," Progress In Electromagnetics Research, Vol. 104, 15-30, 2010.
doi:10.1109/TEMC.2010.2100823 Google Scholar
14. Remley, K. A., S. J. Floris, H. A. Shah, and C. L. Holloway, "Static and dynamic propagation-channel impairments in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 589-599, 2011. Google Scholar
15. Centeno, A. and N. Alford, "Measurement of zigbee wireless communications in mode-stirred and mode-tuned reverberation chamber," Progress In Electromagnetics Research M, Vol. 18, 171-178, 2011. Google Scholar
16. Staniec, K. and A. J. Pomianek, "On simulating the radio signal propagation in the reverberation chamber with the ray launching method," Progress In Electromagnetics Research B, Vol. 27, 83-99, 2011.
doi:10.2528/PIER10022605 Google Scholar
17. Pomianek, A. J., K. Staniec, and Z. Joskiewicz, "Practical remarks on measurement and simulation methods to emulate the wireless channel in the reverberation chamber," Progress In Electromagnetics Research, Vol. 105, 49-69, 2010.
doi:10.1163/156939310793675600 Google Scholar
18. Mariani Primiani, V. and F. Moglie, "Numerical simulation of LOS and NLOS conditions for an antenna inside a reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2319-2331, 2010.
doi:10.2528/PIERB10062313 Google Scholar
19. Lallechμere, S., S. Girard, D. Roux, P. Bonnet, F. Paladian, and A. Vian, "Mode stirred reverberation chamber (MSRC): A large and e±cient tool to lead high frequency bioelectromagnetic in vitro experimentation," Progress In Electromagnetics Research B, Vol. 26, 257-290, 2010.
doi:10.2528/PIERB11022506 Google Scholar
20. Moglie, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.1109/TEMC.2003.809117 Google Scholar
21. Holloway, C. L., D. A. Hill, J. Ladbury, G. Koepke, and R. Garzia, "Shielding e?ectiveness measurements of materials using nested reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 350-356, 2003.
doi:10.1109/TEMC.2009.2032650 Google Scholar
22. Mariani Primiani, V., F. Moglie, and A. P. Pastore, "Field penetration through a wire mesh screen excited by a reverberation chamber fiqgeld: FDTD analysis and experiments," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 4, 883-891, 2009. Google Scholar
23. Mansson, D. and A. Ellgardt, "Comparing analytical and numerical calculations of shielding effectiveness of planar metallic meshes with measurements in cascaded reverberation chambers," Progress In Electromagnetics Research C, Vol. 31, 123-135, 2012.
doi:10.1109/TEMC.2006.870793 Google Scholar
24. Moglie, F. and A. P. Pastore, "FDTD analysis of plane waves superposition to simulate susceptibility tests in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 195-202, 2006.
doi:10.1109/TEMC.2011.2167337 Google Scholar
25. Mariani Primiani, V. and F. Moglie, "Numerical simulation of reverberation chamber parameters affecting the received power statistics," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 522-532, 2012.
doi:10.1109/TEMC.2009.2013456 Google Scholar
26. Fedeli, D., G. Gradoni, V. Mariani Primiani, and F. Moglie, "Accurate analysis of reverberation field penetration into an equipment-level enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 2, 170-180, 2009.
doi:10.1109/TEMC.2006.870805 Google Scholar
27. Gradoni, G., F. Moglie, A. P. Pastore, V. Mariani Primiani, and , "Numerical and experimental analysis of the field to enclosure coupling in reverberation chamber and comparison with anechoic chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 203-211, 2006.
doi:10.1109/TEMC.2011.2170692 Google Scholar
28. West, J. C., C. F. Bunting, and V. Rajamani, "Accurate and efficient numerical simulation of the random environment within an ideal reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 1, 167-173, 2012.
doi:10.1109/TAP.2012.2194677 Google Scholar
29. Zhao, H. and Z. Shen, "Memory-efficient modeling of reverberation chambers using hybrid recursive update discrete singular convolution-method of moments," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2781-2789, 2012.
doi:10.1109/TEMC.2004.826878 Google Scholar
30. Carlberg , U., P.-S. Kildal, A. Wolfgang, O. Sotoudeh, and C. Orlenius, "Calculated and measured absorption cross sections of lossy objects in reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 2, 146-154, 2004. Google Scholar
31. Amador, E., M. Andries, C. Lemoine, and P. Besnier, "Absorbing material characterization in a reverberation chamber," EMC Europe 2011 York, 117-122, 2011. Google Scholar
32. El Baba, I., S. Lallechµere, and P. Bonnet, "Numerical total scattering cross section from reverberating electromagnetic experiments," Progress In Electromagnetics Research Letters, Vol. 19, 127-135, 2010.
doi:10.1109/TEMC.2009.2033576 Google Scholar
33. Gifuni, A., "On the measurement of the absorption cross section and material reflectivity in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 4, 1047-1050, 2009. Google Scholar
34. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, 2000.
doi:10.1049/ip-smt:20060014 Google Scholar
35. Cerri, G., R. De Leo, V. Mariani Primiani, and F. Moglie, "Theoretical and experimental analysis of the field-to-line coupling in a reverberation chamber," IEE Proceedings on Science, Measurement and Technology, Vol. 153, No. 5, 201-207, 2006. Google Scholar
36. Weisstein, E. W., "Sphere point picking,", MathWorld --- A Wolf-ram Web Resource, http://mathworld.wolfram.com/SpherePoint-Picking.html, 2012. Google Scholar
37. International Standards --- IEC 61000-4-21 "Electromagnetic compatibility (EMC) | Part 4-21: Testing and Measurement Techniques | Reverberation Chamber Test Methods,". Google Scholar
38. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.
doi:10.1016/j.carbon.2011.12.053 Google Scholar
39. Moglie, F., D. Micheli, S. Laurenzi, M. Marchetti, and V. Mariani Primiani, "Electromagnetic shielding performance of carbon foams," Carbon, Vol. 50, No. 5, 1972-1980, 2012. Google Scholar