Vol. 47
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-12
Analysis of Scattering from Three-Dimensional Objects Buried Below a Random Rough Surface by Monte-Carlo Mpstd Method
By
Progress In Electromagnetics Research B, Vol. 47, 383-404, 2013
Abstract
This paper presents a Monte-Carlo multidomainpseudospectral time-domain (MPSTD) algorithmdeveloped for the analysis of scattering from a three dimensional (3D)objectburied below arandom rough surface separating two half spaces. In the development, special attention is paid to the 3Dcomputation domain decomposition and subdomain mapping involving the random rough surfaceas well as the subdomain patching along the rough surface. The Mote-Carlo MPSTD algorithm is then employed to determine the scattering of 3D objects of various shapes and electromagnetic properties; embedded in the lower half space with different permittivity and the roughness of the random rough surface may vary.Sample numerical results are presented, validated, and analyzed.Through the analysis, it is observed that the roughness of the random rough surface and the electromagnetic properties of the lower half space can significantly affect the scattered signature of the buried object.
Citation
Wei Liu, Yueyang Dai, and Xiao-Bang Xu, "Analysis of Scattering from Three-Dimensional Objects Buried Below a Random Rough Surface by Monte-Carlo Mpstd Method," Progress In Electromagnetics Research B, Vol. 47, 383-404, 2013.
doi:10.2528/PIERB12100106
References

1. Wang, M.-J., Z.-S. Wu, and Y.-L. Li, "Investigation on the scattering characteristics of Gaussian beam from two dimensional dielectric rough surfaces based on the Kirchhoff approximation," Progress In Electromagnetic Research B, Vol. 4, 223-235, 2008.
doi:10.2528/PIERB08010903

2. Guo, L.-X., Y. Liang, J. Li, and Z.-S. Wu, "A high order integral SPM for the conducting rough surface scattering with the tapered wave incidence-TE case," Progress in Electromagnetic Research, Vol. 114, 333-352, 2011.

3. Berginc, G., "Small-slope approximation method: A further study of vector wave scattering from two-dimensional surfaces and comparison with experimental data," Progress In Electromagnetics Research, Vol. 37, 251-287, 2002.
doi:10.2528/PIER02070603

4. Lawrence, D. E. and K. Sarabandi, "Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1368-1376, 2002.
doi:10.1109/TAP.2002.802160

5. Fiaz, M. A., F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, "Scattering by a circular cylinder buried under a slightly rough surface: The cylindrical-wave approach," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2834-2842, 2012.
doi:10.1109/TAP.2012.2194641

6. Wang, X. and L.-W. Li, "Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: Horizontal polarization," Progress In Electromagnetics Research, Vol. 91, 35-51, 2009.
doi:10.2528/PIER09013001

7. Zhang, G. F., L. Tsang, and K. Pak, "Angular correlation function and scattering coe±cient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface," J. Opt. Soc. Am. A, Vol. 15, No. 12, 2995-3002, 1998.
doi:10.1364/JOSAA.15.002995

8. Johnson, J. T., "A numerical study of scattering from an object above a rough surface," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 1, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152

9. El-Shenawee, M., C. Rappaport, E. Miller, and M. Silevitch, "3-D subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surface: Use of the steepest descent fast multipole method (SDFMM)," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 6, 1174-1182, 2001.
doi:10.1109/36.927436

10. El-Shenawee, M., "Scattering from multiple objects buried beneath two-dimensional random rough surface using the steepest decent fast multipole method," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 4, 802-809, 2003.
doi:10.1109/TAP.2003.811096

11. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the GSMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

12. Chen, H. T. and G.-Q. Zhu, "Model the electromagnetic scattering from three-dimensional PEC object buried under rough ground by MoM and modi¯ed PO hybrid method," Progress In Electromagnetics Research, Vol. 77, 15-27, 2007.
doi:10.2528/PIER07072202

13. Ye, H. X. and Y. Q. Jin, "A hybrid analytic-numerical algorithm of scattering from an object above a rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 5, 1174-1180, 2007.
doi:10.1109/TGRS.2007.892609

14. Guan, B., J. F. Zhang, X. Y. Zhou, T. J. Cui, and W. Hong, "Electromagnetic scattering from objects above a rough surface using the method of moments with half-space Green's function," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 10, 3309-3405, 2009.

15. Li, X.-M., C.-M. Tong, S. H. Fu, and J.-J. Li, "Bistatic electromagnetic scattering from a three-dimensional perfect electric conducting object above a Gaussian rough surface based on the Kirchhoff-Helmoltz and electric field integral equation," Waves in Random and Complex Media, Vol. 21, No. 3, 389-404, 2011.
doi:10.1080/17455030.2011.571725

16. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 11, 1183-1191, 1995.

17. Kuang, L. and Y.-Q. Jin, "Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, 2302-2312, 2007.
doi:10.1109/TAP.2007.901846

18. Li, J., L.-X. Guo, and H. Zeng, "FDTD investigation on the electromagnetic scattering from a target above a randomly rough surface ," Waves in Random and Complex Media, Vol. 18, No. 4, 641-650, 2008.
doi:10.1080/17455030802302134

19. Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, "Staircase-free finite-difference time-domain formulation for general materials in complex geometries ," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 5, 749-756, 2001.
doi:10.1109/8.929629

20. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A finite-difference time-domain solution to scattering from a rough pressure-release surface ," Journal of American Acoustic Society, Vol. 102, No. 6, 3394-3400, 1997.
doi:10.1121/1.419581

21. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microwave and Optical Technology Letters, Vol. 16, No. 3, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

22. Taflove, A. and S. C. Hagness, Computational Electrodynamics the Finite-di®erence Time-domain Method, 3rd Edition, Chapter 17, Advances in PSTD Techniques, Q. H. Liu and G. Zhao, Eds., Artech House, Inc., Norwood, MA, 2005.

23. Yang, B. and J. S. Hesthaven, "A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 1, 132-141, 1999.
doi:10.1109/8.753003

24. Yang, B. and J. S. Hesthaven, "Multidomain pseudospectral computation of Maxwell's equations in 3-D general curvilinear coordinates," Applied Numerical Mathematics, Vol. 33, 281-289, 2000.
doi:10.1016/S0168-9274(99)00094-X

25. Zhao, G. and Q. H. Liu, "The 2.5-D multidomain pseudospectral time-domain algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 619-627, 2003.
doi:10.1109/TAP.2003.809852

26. Zhao, G. and Q. H. Liu, "The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media," IEEE Transaction on Antennas and Propagation, Vol. 52, No. 3, 742-749, 2003.
doi:10.1109/TAP.2004.825187

27. Shi, Y. and C.-H. Liang, "Two dimensional multidomain pseudospectral time-domain algorithm based on alternating-direction implicit method," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1207-1214, 2006.
doi:10.1109/TAP.2006.872591

28. Shi, Y. and C.-H. Liang, "Multidomain pseudospectral time domain algorithm using a symplectic integrator," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 433-439, 2007.
doi:10.1109/TAP.2006.889906

29. Liu, Q. H., "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, 917-926, 1999.
doi:10.1109/36.752210

30. Liu, Q. H. and G.-X. Fan, "Simulations of GPR in dispersive media using a frequency-dependent PSTD algorithm," IEEE Transaction on Geoscience and Remote Sensing, Vol. 37, No. 5, 2317-2324, 1999.
doi:10.1109/36.789628

31. Fan, G. X., Q. H. Liu, and J. S. Hesthaven, "Multidomain pseudospectral time-domain simulations of scattering by objects buried in lossy media," IEEE Transactions on Geoscience and Sensing, Vol. 40, No. 6, 1366-1373, 2002.
doi:10.1109/TGRS.2002.800272

32. Liu, W., Y. Dai, H.-Y. Yang, and X.-B. Xu, "Scattering of object buried below random rough surface --- A Monte Carlo pseudospectral time-domain approach," Electromagnetics, Vol. 32, No. 6, 330-344, 2012.
doi:10.1080/02726343.2012.701515

33. Fan, G.-X. and Q. H. Liu, "A well-posed PML absorbing boundary condition for lossy media," Proceedings of IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2-5, 2001.

34. Fan, G.-X. and Q. H. Liu, "A strongly well-posed PML in lossy media," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 97-100, 2003.

35. Shi, Y. and C.-H. Liang, "A strongly well-posed PML with unsplit-field formulations in cylindrical and spherical coordinates ," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1761-1776, 2005.
doi:10.1163/156939305775696784

36. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, (Volume II) Numerical Simulations, John Wiley & Sons Inc., New York, 2001.

37. Papoulis, A., Probability, Random Variables, and Stochastic Processes, 2nd Ed., McGraw-Hill Book Company, New York, 1984.

38. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, CRC Press, 1992.