Vol. 46
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-12-10
Magnetic Energy of Surface Currents on a Torus
By
Progress In Electromagnetics Research B, Vol. 46, 357-378, 2013
Abstract
The magnetic energy and inductance of current distributions on the surface of a torus are considered. Specifically, we investigate the in°uence of the aspect ratio of the torus, and of the pitch angle for helical current densities, on the energy. We show that, for a fixed surface area of the torus, the energy experiences a minimum for a certain pitch angle. New analytical relationships are presented as well as a review of results scattered in the literature. Results for the ideally conducting torus, as well as for thin rings are given.
Citation
Hanno Essén, Johan Sten, and Arne B. Nordmark, "Magnetic Energy of Surface Currents on a Torus," Progress In Electromagnetics Research B, Vol. 46, 357-378, 2013.
doi:10.2528/PIERB12102909
References

1. Tonomura, A., N. Osakabe, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, "Evidence for Aharonov-Bohm effect with magnetic ¯eld completely shielded from electron wave," Phys. Rev. Lett., Vol. 56, 792-795, 1986.
doi:10.1103/PhysRevLett.56.792        Google Scholar

2. Osakabe, N., T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, and H. Yamada, "Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor," Phys. Rev. A, Vol. 34, 815-822, 1986.
doi:10.1103/PhysRevA.34.815        Google Scholar

3. Carron, N. J., "On the fields of the torus and the role of the vector potential," Am. J. Phys., Vol. 64, 717-729, 1995.
doi:10.1119/1.17842        Google Scholar

4. Bhadra, D., "Field due to current in toroidal geometry," Rev. Sci. Instrum., Vol. 39, 1536-1546, 1968.
doi:10.1063/1.1683157        Google Scholar

5. Carter, G. W., S. C. Loh, and C. Y. K. Po, "The magnetic field of systems of currents circulating in a conducting ring," Quart. Journ. Mech. and Applied Math., Vol. 18, 87-106, 1965.
doi:10.1093/qjmam/18.1.87        Google Scholar

6. Doinikov, N. I., "Determination of magnetic fields set up by currents flowing on the surface of a torus," Sov. Phys. --- Tech. Phys., Vol. 9, 1367-1374, USA, 1965, Translated from: Zhurnal Tekhnicheskoi Fiziki, Vol. 34, 1769-1779, 1964.        Google Scholar

7. Gyimesi, M. and D. Lavers, "Magnetic field around an iron torus," IEEE Transactions on Magnetics, Vol. 28, 2799-2801, 1992.
doi:10.1109/20.179631        Google Scholar

8. Haas, H., "Das Magnetfeld eines gleichstromdurchflossenen Torus," Arch. f. Elektrotech., Vol. 58, 197-209, 1976.
doi:10.1007/BF01600116        Google Scholar

9. Hansen, R. C. and R. D. Ridgley, "Fields of the contrawound toroidal helix antenna," IEEE Trans. Ant. Prop., Vol. 49, 1138-1141, 2001.
doi:10.1109/8.943308        Google Scholar

10. Haubitzer, W., "Das magnetische Feld eines Toroids und einer mehrlagigen Zylinderspule," Z. elektr. Inf. Energietech., Vol. 4, 129-136, 1974.        Google Scholar

11. McDonald, K., "Electromagnetic fields of a small helical toroidal antenna,", Dec. 2008, URL: http://www.physics.princeton.edu/~mcdonald/examples/cwhta.pdf.        Google Scholar

12. Page, C. H., "External field of an ideal toroid," Am. J. Phys., Vol. 39, 1039-1043, 1971.
doi:10.1119/1.1986365        Google Scholar

13. Page, C. H., "On the external magnetic field of a closed-loop core," Am. J. Phys., Vol. 39, 1206-1209, 1971.
doi:10.1119/1.1976606        Google Scholar

14. Schenkel, G., "Das Vektorpotentialfeld stromumflossener Toroide," Annalen der Physik, Vol. 426, 541-560, 1939.
doi:10.1002/andp.19394260604        Google Scholar

15. Sy, W. N.-C., "Magnetic field due to helical currents on torus," J. Phys. A: Math. Gen., Vol. 14, 2095-2112, 1981.
doi:10.1088/0305-4470/14/8/031        Google Scholar

16. Rayleigh, L., "On the self-induction of electric currents in a thin anchor-ring," Proc. Roy. Soc. A, Vol. 86, No. 590, 562-571, 1912.
doi:10.1098/rspa.1912.0046        Google Scholar

17. Haas, H., "Ein Beitrag zur Berechnung der Selbstinduktivitateines Torus," Arch. f. Elektrotech., Vol. 58, 305-308, 1976.
doi:10.1007/BF01584576        Google Scholar

18. Karlsson, P. W., "Inductance inequalities for ideal conductors Archiv f. Elektrotech.,", Vol. 67, 29-33, 1984.
doi:10.1007/BF01574728        Google Scholar

19. Kliem, B. and T. Torok, "Torus instability," Phys. Rev. Lett., Vol. 96, 255002-1-255002-4, 2006.        Google Scholar

20. Salingaros, N. A., "Optimal current distribution for energy storage in superconducting magnets," J. Appl. Phys., Vol. 69, 531-533, 1991.
doi:10.1063/1.347701        Google Scholar

21. Tayler, R. J., "The distribution of currents on the surface of a toroidal conductor,", Technical Report AERE-M-563, Atomic Energy Research Establishment, Harwell, 1960.        Google Scholar

22. Zic, T., B. Vrsnak, and M. Skender, "The magnetic flux and self-inductivity of a thick toroidal current," J. Plasma Physics, Vol. 73, 741-756, 2007.        Google Scholar

23. Buck, G. J., "Force-free magnetic-field solution in toroidal coordinates," J. Appl. Phys., Vol. 36, 2231-2235, 1965.
doi:10.1063/1.1714456        Google Scholar

24. Romashets, E. P. and M. Vandas, "Force-free field inside a toroidal magetic cloud," Geophys. Res. Lett., Vol. 64, 144505-1-144505-7, 2003.        Google Scholar

25. Miller, G. and L. Turner, "Force free equilibria in toroidal geometry," Phys. Fluids, Vol. 24, 363-365, 1981.
doi:10.1063/1.863351        Google Scholar

26. Bhattacharyya, R., M. S. Janaki, and B. Dasgupta, "Minimum dissipative relaxed states in toroidal plasmas," Pramana --- J. Phys., Vol. 55, 947-952, 2000.
doi:10.1007/s12043-000-0064-7        Google Scholar

27. Miura, Y., M. Sakota, and R. Shimada, "Force-free coil principle applied to helical winding," IEEE Transactions on Magnetics, Vol. 30, 2573-2576, 1994.
doi:10.1109/20.305804        Google Scholar

28. Aliferov, A. and S. Lupi, "Skin effect in toroidal conductors with circular cross section," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 27, 408-414, 2008.
doi:10.1108/03321640810847698        Google Scholar

29. Belevitch, V. and J. Boersma, "Some electrical problems for a torus," Philips J. Res., Vol. 38, 79-137, 1983.        Google Scholar

30. Dolecek, R. L. and J. de Launay, "Conservation of flux by a superconducting torus," Phys. Rev., Vol. 78, 58-60, 1950.
doi:10.1103/PhysRev.78.58        Google Scholar

31. De Launay, J., "Electrodynamics of a superconducting torus,", Technical Report NRL-3441, Naval Research Lab, Washington DC, 1949.        Google Scholar

32. Fock, V., "Skineffekt in einem Ring," Phys. Z. Sowjetunion, Vol. 1, 215-236, 1932.        Google Scholar

33. Ivaska, V., V. Jonkus, and V. Palenskis, "Magnetic field distribution around a superconducting torus," Physica C, Vol. 319, 79-86, 1999.
doi:10.1016/S0921-4534(99)00279-8        Google Scholar

34. Malmberg, J. H. and M. N. Rosenbluth, "High frequency inductance of a torus," Rev. Sci. Instr., Vol. 36, 1886-1887, 1965.
doi:10.1063/1.1719491        Google Scholar

35. Irons, M. L., "The curvature and geodesics of the torus,", 2005, URL: http://www.rdrop.com/~half/math/torus/torus.geodesics.pdf.        Google Scholar

36. Hayt Jr., W. H. and J. A. Buck, Engineering Electromagnetics, McGraw-Hill, New York, 2006.

37. Grover, F. W., Inductance Calculations --- Working Formulas and Tables, Van Nostrand, New York, 1946.

38. Snow, C., Formulas for Computing Capacitance and Inductance, National Bureau of Standards, Washington DC, 1954.

39. Knoepfel, H. E., Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use, Wiley-Interscience, New York, 2000.

41. Paul, C. R., "Inductance --- Loop and Partial," John Wiley, Hoboken, NJ, 2010.        Google Scholar

42. Field Theory Handbook --- Including Coordinate Systems, Di®erential Equations and their Solutions, P. and D. E. Spencer, D. E. Spencer, Springer, Berlin, 1961.

43. Becker, R., Electromagnetic Fields and Interactions, Blaisdell, New York, 1964, Reprinted: Dover, New York, 1982.

44. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed., Butterworth-Heinemann, Oxford, 1984.

45. Essen, H., "From least action in electrodynamics to magnetomechanical energy --- A review," Eur. J. Phys., Vol. 30, 515-539, 2009.
doi:10.1088/0143-0807/30/3/009        Google Scholar

46. Cohen, E. R., The Physics Quick Reference Guide, AIP Press, Woodbury, NY, 1996.

47. Frank, N. H. and W. Tobocman, "Electromagnetic theory," Fundamental Formulas of Physics, D. H. Menzel (ed.), Vol. 1, 307-354, Dover, New York, 1960.        Google Scholar

48. Fiolhais, M. C. N., H. Essen, C. Providentia, and A. B. Nordmark, "Magnetic ¯eld and current are zero inside ideal conductors," Progress In Electromagnetics Research B, Vol. 27, 187-212, 2011.        Google Scholar

49. Neumann, F. E., "Allgemeine Gesetze der inducirten elektrischen Strome," Abhandlungen der Koniglichen Akademie der Wissenschaften zu Berlin, Phys. Klasse., 1845.        Google Scholar

50. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, 2nd Ed., Chapman & Hall/CRC, Boca Raton, 2003.