1. Tonomura, A., N. Osakabe, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, "Evidence for Aharonov-Bohm effect with magnetic ¯eld completely shielded from electron wave," Phys. Rev. Lett., Vol. 56, 792-795, 1986.
doi:10.1103/PhysRevLett.56.792 Google Scholar
2. Osakabe, N., T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, and H. Yamada, "Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor," Phys. Rev. A, Vol. 34, 815-822, 1986.
doi:10.1103/PhysRevA.34.815 Google Scholar
3. Carron, N. J., "On the fields of the torus and the role of the vector potential," Am. J. Phys., Vol. 64, 717-729, 1995.
doi:10.1119/1.17842 Google Scholar
4. Bhadra, D., "Field due to current in toroidal geometry," Rev. Sci. Instrum., Vol. 39, 1536-1546, 1968.
doi:10.1063/1.1683157 Google Scholar
5. Carter, G. W., S. C. Loh, and C. Y. K. Po, "The magnetic field of systems of currents circulating in a conducting ring," Quart. Journ. Mech. and Applied Math., Vol. 18, 87-106, 1965.
doi:10.1093/qjmam/18.1.87 Google Scholar
6. Doinikov, N. I., "Determination of magnetic fields set up by currents flowing on the surface of a torus," Sov. Phys. --- Tech. Phys., Vol. 9, 1367-1374, USA, 1965, Translated from: Zhurnal Tekhnicheskoi Fiziki, Vol. 34, 1769-1779, 1964. Google Scholar
7. Gyimesi, M. and D. Lavers, "Magnetic field around an iron torus," IEEE Transactions on Magnetics, Vol. 28, 2799-2801, 1992.
doi:10.1109/20.179631 Google Scholar
8. Haas, H., "Das Magnetfeld eines gleichstromdurchflossenen Torus," Arch. f. Elektrotech., Vol. 58, 197-209, 1976.
doi:10.1007/BF01600116 Google Scholar
9. Hansen, R. C. and R. D. Ridgley, "Fields of the contrawound toroidal helix antenna," IEEE Trans. Ant. Prop., Vol. 49, 1138-1141, 2001.
doi:10.1109/8.943308 Google Scholar
10. Haubitzer, W., "Das magnetische Feld eines Toroids und einer mehrlagigen Zylinderspule," Z. elektr. Inf. Energietech., Vol. 4, 129-136, 1974. Google Scholar
11. McDonald, K., "Electromagnetic fields of a small helical toroidal antenna,", Dec. 2008, URL: http://www.physics.princeton.edu/~mcdonald/examples/cwhta.pdf. Google Scholar
12. Page, C. H., "External field of an ideal toroid," Am. J. Phys., Vol. 39, 1039-1043, 1971.
doi:10.1119/1.1986365 Google Scholar
13. Page, C. H., "On the external magnetic field of a closed-loop core," Am. J. Phys., Vol. 39, 1206-1209, 1971.
doi:10.1119/1.1976606 Google Scholar
14. Schenkel, G., "Das Vektorpotentialfeld stromumflossener Toroide," Annalen der Physik, Vol. 426, 541-560, 1939.
doi:10.1002/andp.19394260604 Google Scholar
15. Sy, W. N.-C., "Magnetic field due to helical currents on torus," J. Phys. A: Math. Gen., Vol. 14, 2095-2112, 1981.
doi:10.1088/0305-4470/14/8/031 Google Scholar
16. Rayleigh, L., "On the self-induction of electric currents in a thin anchor-ring," Proc. Roy. Soc. A, Vol. 86, No. 590, 562-571, 1912.
doi:10.1098/rspa.1912.0046 Google Scholar
17. Haas, H., "Ein Beitrag zur Berechnung der Selbstinduktivitateines Torus," Arch. f. Elektrotech., Vol. 58, 305-308, 1976.
doi:10.1007/BF01584576 Google Scholar
18. Karlsson, P. W., "Inductance inequalities for ideal conductors Archiv f. Elektrotech.,", Vol. 67, 29-33, 1984.
doi:10.1007/BF01574728 Google Scholar
19. Kliem, B. and T. Torok, "Torus instability," Phys. Rev. Lett., Vol. 96, 255002-1-255002-4, 2006. Google Scholar
20. Salingaros, N. A., "Optimal current distribution for energy storage in superconducting magnets," J. Appl. Phys., Vol. 69, 531-533, 1991.
doi:10.1063/1.347701 Google Scholar
21. Tayler, R. J., "The distribution of currents on the surface of a toroidal conductor,", Technical Report AERE-M-563, Atomic Energy Research Establishment, Harwell, 1960. Google Scholar
22. Zic, T., B. Vrsnak, and M. Skender, "The magnetic flux and self-inductivity of a thick toroidal current," J. Plasma Physics, Vol. 73, 741-756, 2007. Google Scholar
23. Buck, G. J., "Force-free magnetic-field solution in toroidal coordinates," J. Appl. Phys., Vol. 36, 2231-2235, 1965.
doi:10.1063/1.1714456 Google Scholar
24. Romashets, E. P. and M. Vandas, "Force-free field inside a toroidal magetic cloud," Geophys. Res. Lett., Vol. 64, 144505-1-144505-7, 2003. Google Scholar
25. Miller, G. and L. Turner, "Force free equilibria in toroidal geometry," Phys. Fluids, Vol. 24, 363-365, 1981.
doi:10.1063/1.863351 Google Scholar
26. Bhattacharyya, R., M. S. Janaki, and B. Dasgupta, "Minimum dissipative relaxed states in toroidal plasmas," Pramana --- J. Phys., Vol. 55, 947-952, 2000.
doi:10.1007/s12043-000-0064-7 Google Scholar
27. Miura, Y., M. Sakota, and R. Shimada, "Force-free coil principle applied to helical winding," IEEE Transactions on Magnetics, Vol. 30, 2573-2576, 1994.
doi:10.1109/20.305804 Google Scholar
28. Aliferov, A. and S. Lupi, "Skin effect in toroidal conductors with circular cross section," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 27, 408-414, 2008.
doi:10.1108/03321640810847698 Google Scholar
29. Belevitch, V. and J. Boersma, "Some electrical problems for a torus," Philips J. Res., Vol. 38, 79-137, 1983. Google Scholar
30. Dolecek, R. L. and J. de Launay, "Conservation of flux by a superconducting torus," Phys. Rev., Vol. 78, 58-60, 1950.
doi:10.1103/PhysRev.78.58 Google Scholar
31. De Launay, J., "Electrodynamics of a superconducting torus,", Technical Report NRL-3441, Naval Research Lab, Washington DC, 1949. Google Scholar
32. Fock, V., "Skineffekt in einem Ring," Phys. Z. Sowjetunion, Vol. 1, 215-236, 1932. Google Scholar
33. Ivaska, V., V. Jonkus, and V. Palenskis, "Magnetic field distribution around a superconducting torus," Physica C, Vol. 319, 79-86, 1999.
doi:10.1016/S0921-4534(99)00279-8 Google Scholar
34. Malmberg, J. H. and M. N. Rosenbluth, "High frequency inductance of a torus," Rev. Sci. Instr., Vol. 36, 1886-1887, 1965.
doi:10.1063/1.1719491 Google Scholar
35. Irons, M. L., "The curvature and geodesics of the torus,", 2005, URL: http://www.rdrop.com/~half/math/torus/torus.geodesics.pdf. Google Scholar
36. Hayt Jr., W. H. and J. A. Buck, Engineering Electromagnetics, McGraw-Hill, New York, 2006.
37. Grover, F. W., Inductance Calculations --- Working Formulas and Tables, Van Nostrand, New York, 1946.
38. Snow, C., Formulas for Computing Capacitance and Inductance, National Bureau of Standards, Washington DC, 1954.
39. Knoepfel, H. E., Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use, Wiley-Interscience, New York, 2000.
41. Paul, C. R., "Inductance --- Loop and Partial," John Wiley, Hoboken, NJ, 2010. Google Scholar
42. Field Theory Handbook --- Including Coordinate Systems, Di®erential Equations and their Solutions, P. and D. E. Spencer, D. E. Spencer, Springer, Berlin, 1961.
43. Becker, R., Electromagnetic Fields and Interactions, Blaisdell, New York, 1964, Reprinted: Dover, New York, 1982.
44. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed., Butterworth-Heinemann, Oxford, 1984.
45. Essen, H., "From least action in electrodynamics to magnetomechanical energy --- A review," Eur. J. Phys., Vol. 30, 515-539, 2009.
doi:10.1088/0143-0807/30/3/009 Google Scholar
46. Cohen, E. R., The Physics Quick Reference Guide, AIP Press, Woodbury, NY, 1996.
47. Frank, N. H. and W. Tobocman, "Electromagnetic theory," Fundamental Formulas of Physics, D. H. Menzel (ed.), Vol. 1, 307-354, Dover, New York, 1960. Google Scholar
48. Fiolhais, M. C. N., H. Essen, C. Providentia, and A. B. Nordmark, "Magnetic ¯eld and current are zero inside ideal conductors," Progress In Electromagnetics Research B, Vol. 27, 187-212, 2011. Google Scholar
49. Neumann, F. E., "Allgemeine Gesetze der inducirten elektrischen Strome," Abhandlungen der Koniglichen Akademie der Wissenschaften zu Berlin, Phys. Klasse., 1845. Google Scholar
50. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, 2nd Ed., Chapman & Hall/CRC, Boca Raton, 2003.