1. Simon, R. N., Coplanar Waveguide Circuits Components and Systems, John Wiley & Sons, New York, 2001.
doi:10.1002/0471224758
2. Wolff, I., "Coplanar Microwave Integrated Circuits," John Wiley & Sons, New York, 2006. Google Scholar
3. Nguyen, C., "Analysis Methods for RF, Microwave, and Millimeter-wave Planar Transmission Line Structures," John Wiley & Sons, Inc., 2000. Google Scholar
4. Bedair, S. S. and I. Wolff, "Fast accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for (M)MIC's," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 1, 41-48.
doi:10.1109/22.108321 Google Scholar
5. Gevorgian, S. S., T. Martinsson, P. L. J. Linner, and E. L. Kolberg, "CAD models for multilayered substrate interdigital capacitors," IEEE Transactions on Microwave Theory and Techniques,, Vol. 44, No. 6, 896-904, Jun. 1996.
doi:10.1109/22.506449 Google Scholar
6. Hanna, V. F. and D. Thebault, "Theoretical and experimental investigation of asymmetric coplanar waveguides," IEEE MTT-S Digest, 469-471, 1984. Google Scholar
7. Karpuz, C., A. Gorur, H. Gorur, and M. Alkan, "Fast and simple analytical expressions for quasistatic parameters of asymmetric coplanar lines," Microwave and Optical Technology Letters, Vol. 9, 334-336, Aug. 1995.
doi:10.1002/mop.4650090611 Google Scholar
8. Chen, P., X. M. Li, S. J. Fang, and S. Q. Fu, "Calculation and analysis of ACPW and UWB ACPW-slotline transition," International Conference on Signal Processing Systems (ICSPS), 644-646, 2010. Google Scholar
9. Kitazawa, T., "Metallization thickness effect of striplines with anisotropic media: Quasi-static and hybrid-mode analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, No. 4, 769-775, Apr. 1989.
doi:10.1109/22.18852 Google Scholar
10. Chang, J. J., "Dispersion characteristics of asymmetrical coplanar waveguide with anisotropic substrate," International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 6, No. 3, 166-173, 1996.
doi:10.1002/(SICI)1522-6301(199605)6:3<166::AID-MMCE2>3.0.CO;2-P Google Scholar
11. Kitazawa, T. and T. Itoh, "Asymmetrical coplanar waveguide with finite metallization thickness containing anisotropic media," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 8, 1426-1433, Aug. 1991.
doi:10.1109/22.85421 Google Scholar
12. Zhang, J. and T. Y. Hsiang, "Dispersion characteristics of coplanar waveguides at substerahertz frequencies," Progress In Electromagnetics Research Symposium, 232-235, Cambridge, USA, Mar. 26-29, 2006. Google Scholar
13. Hasnain, G., A. Dienes, and J. R. Whinnery, "Dispersion of picosecond pulses in coplanar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 6, 738-741, Jun. 1986.
doi:10.1109/TMTT.1986.1133427 Google Scholar
14. Rossi, T., M. Farina, and , Advanced Electromagnetic Analysis of Passive and Active Planar Structures, 95-96, IEE Pub., U.K., 1999.
15. Duyar, M., V. Akan, E. Yazgan, and M. Bayrak, "Analytical attenuation calculation of asymmetrical coplanar waveguide with finite extent ground planes for coplanar waveguide mode," Microwave and Optical Technology Letters, Vol. 49, No. 9, 2082-2087, Sep. 2007.
doi:10.1002/mop.22709 Google Scholar
16. Ghione, G., "A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 9, 1499-1510, Sep. 1993.
doi:10.1109/22.245668 Google Scholar
17. Holloway, C. L. and E. F. Kuester, "A quasi-closed form expression for the conductor loss of CPW lines with an investigation of edge shape effects," IEEE Transactions on Microwave Theory Techniques, Vol. 43, No. 12, 2695-2701, Dec. 1995.
doi:10.1109/22.477846 Google Scholar
18. Singh, H. and A. K. Verma, "Conductor loss of the coplanar waveguide with conductor backing and top shield," IEEE Asia Pacific Microwave Conference (APMC), Delhi, India, 2004. Google Scholar
19. Majumdar, P. and A. K. Verma, "Accurate CAD model of stopping distance to compute conductor loss of CPW," International Journal Electron. Commun. (AEU), Vol. 64, 1157-1166, 2010.
doi:10.1016/j.aeue.2009.11.004 Google Scholar
20. Verma, A. K., Nasimuddin, and H. Singh, "Dielectric loss of multilayer coplanar waveguide using the single layer reduction (SLR) formulation," IEEE Asia Pacific Microwave Conference (APMC), China, Dec. 4-7, 2005. Google Scholar
21. Itoh, T., "Generalized spectral domain method for multiconductor printed lines and its application to tunable suspended microstrips," IEEE Transactions Microwave Theory and Techniques, Vol. 26, No. 12, 983-987, Dec. 1978.
doi:10.1109/TMTT.1978.1129531 Google Scholar
22. Tripathi, V. K. and R. T. Kollipara, "Quasi-TEM spectral domain analysis of thick microstrip for microwave and digital integrated circuits," Electronics Letters, Vol. 25, No. 18, 1253-1254, Aug. 1989.
doi:10.1049/el:19890840 Google Scholar
23. Verma, A. K. and G. H. Sadr, "Unified dispersion model for multilayer microstrip line," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 7, 1587-1591, Jul. 1992.
doi:10.1109/22.146343 Google Scholar
24. Verma, A. K. and R. Kumar, "New empirical unified dispersion model for suspended, shielded and composite substrate microstrip line for microwave and mm-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 8, 1187-1192, Aug. 1998.
doi:10.1109/22.704967 Google Scholar
25. Yun, , T. Y. and K. Chang, "Analysis and optimization of a phase shifter controlled by a piezoelectric transducer," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 105-111, Jan. 2002. Google Scholar
26., Ansoft HFSS V.11.1, Ansoft Corp.. Google Scholar
26., CST Microwave Studio 2009. Google Scholar
28. Carchon, G., W. De Raedt, and B. Nauwelaers, "Novel approach for a design oriented measurement based fully scaleable coplanar waveguide transmission line model," IEE Proc. Microwaves Antennas Propagation, Vol. 148, No. 4, 227-232, Aug. 2001.
doi:10.1049/ip-map:20010544 Google Scholar
29. Hoffman, R. K., Handbook of Microwave Integrated Circuits, Artech House, 1987.
30. Cramapgane, R., M. Ahmadpanah, and J. L. Guiraud, "A simple method for determining the Green's function for a large class of MIC lines having multilayered dielectric structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 26, No. 2, 82-87, Feb. 1978.
doi:10.1109/TMTT.1978.1129317 Google Scholar
31. Verma, A. K. and A. Bhupal, "Dielectric loss of multilayer microstrip line," Microwave and Optical Technology Letters, Vol. 17, No. 6, 368-370, Apr. 1998.
doi:10.1002/(SICI)1098-2760(19980420)17:6<368::AID-MOP8>3.0.CO;2-F Google Scholar
32. Swanson, D. G. and J. R. H. Wolfgang, Microwave Circuit and Medelling Using Electromagnetic Field Simulation, Artech House, US, 2003.
33. Ponchak, G. E., I. K. Itotia, and R. F. Drayton, "Propagation characteristics of finite ground coplanar waveguide on Si substrates with porous Si and polyimide interface layers," 33rd European Microwave Conf., 45-48, Munich, 2003. Google Scholar