1. Houbavlis, , T., K. E. Zoiros, M. Kalyvas, G. Theophilopoulos, C. Bintjas, K. Yiannopoulos, N. Pleros, K. Vlachos, vramopoulos, and L. Schares, "All-optical signal processing and applications within the Esprit project DO ALL," Journal of Lightwave Technology, Vol. 23, No. 2, 781-801, 2005.
doi:10.1109/JLT.2004.838854 Google Scholar
2. Zoiros, , K. E., T. Houbavlis, and M. Kalyvas, "Ultra-high speed all-optical shift registers and their applications in OTDM networks," Optical and Quantum Electronics, Vol. 36, No. 11, 1005-1053, 2004.
doi:10.1007/s11082-004-2040-9 Google Scholar
3. Hamilton, , S. A., B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, "100 Gb/s optical time-division multiplexed networks," Journal of Lightwave Technology,, Vol. 20, No. 12, 2086-2100, 2002.
doi:10.1109/JLT.2002.806781 Google Scholar
4. De Melo, A. M., S. Randel, and K. Petermann, "Mach-Zehnder interferometer-based high-speed OTDM add-drop multiplexing," Journal of Lightwave Technology, Vol. 25, No. 4, 1017-1026, 2007.
doi:10.1109/JLT.2007.891974 Google Scholar
5. Kanellos, , G. T., L. Stampoulidis, N. Pleros, T. Houbavlis, D. Tsiokos, E. Kehayas, H. Avramopoulos, and G. Guekos, "Clock and data recovery circuit for 10-Gb/s asynchronous optical packets," IEEE Photonics Technology Letters, Vol. 15, No. 11, 1666-1668, 2003.
doi:10.1109/LPT.2003.818647 Google Scholar
6. Ji, W., M. Zhang, and P. Ye, "All-optical-packet header and payload separation for unslotted optical-packet-switched networks," Journal of Lightwave Technology, Vol. 25, No. 3, 703-709, 2007.
doi:10.1109/JLT.2006.890423 Google Scholar
7. Webb, R. P., X. Yang, R. J. Manning, G. D. Maxwell, A. J. Poustie, S. Lardenois, and D. Cotter, "All-optical binary pattern recognition at 42 Gb/s," Journal of Lightwave Technology , Vol. 27, No. 13, 2240-2245, 2009.
doi:10.1109/JLT.2008.2006067 Google Scholar
8. Wang, J., G. Meloni, G. Berrettini, L. PotI, and A. Bogoni, "All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 5, 1486-1494, 2010.
doi:10.1109/JSTQE.2009.2039199 Google Scholar
9. Ghaffari, , B. M. and J. A. Salehi, "Applications and performance of optical analog-to-digital converter and optical logic gate elements in multilevel multiclass fiber-optic CDMA systems," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 5, 1476-1485, 2010.
doi:10.1109/JSTQE.2009.2037161 Google Scholar
10. Wang, Y., X. Zhang, J. Dong, and D. Huang, "Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers," Optics Express, Vol. 15, No. 23, 15080-15085, 2007.
doi:10.1364/OE.15.015080 Google Scholar
11. Leclerc, , O., B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," Journal of Lightwave Technology, Vol. 21, No. 11, 2779-2790, 2003.
doi:10.1109/JLT.2003.819148 Google Scholar
12. Westlund, , M., P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High performance optical-fiber-nonlinearity-based optical waveform monitoring," Journal of Lightwave Technology, Vol. 23, No. 6, 2012-2022, 2005.
doi:10.1109/JLT.2005.849927 Google Scholar
13. Kim, , S. H., J. H. Kim, J. W. Choi, C. W. Son, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using cross gain modulation in semiconductor optical amplifiers," Optics Express, Vol. 14, No. 22, 10693-10698, 2006.
doi:10.1364/OE.14.010693 Google Scholar
14. Gayen, , D. K., T. Chattopadhyay, R. K. Pal, and J. N. Roy, "All-optical multiplication with the help of semiconductor optical amplifier-assisted Sagnac switch ," Journal of Computational Electronics, Vol. 9, No. 2, 57-67, 2010.
doi:10.1007/s10825-010-0305-z Google Scholar
15. Kumar, , S. and A. E. Willner, "Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA," Optics Express,, Vol. 14, No. 12, 5092-5097, 2006.
doi:10.1364/OE.14.005092 Google Scholar
16. Jung, , Y. J., C. W. Son, Y. M. Jhon, S. Lee, and N. Park, "One-level simplification method for all-optical combinational logic circuits," IEEE Photonics Technology Letters, Vol. 20, No. 10, 800-802, 2008.
doi:10.1109/LPT.2008.921125 Google Scholar
17. Dagens, , B., A. Labrousse, R. Brenot, B. Lavigne, and M. Renaud, "SOA-based devices for all-optical signal processing," Proceedings of Optical Fiber Communication Conference,, 582-583, 2003. Google Scholar
18. Ying, C.-L., H.-H. Lu, W.-S. Tsai, H.-C. Peng, and C.-H. Lee, "To employ SOA-based optical SSB modulation technique in full-duplex RoF transport system," Progress In Electromagnetics Research Letters, Vol. 7, 1-13, 2009.
doi:10.2528/PIERL09011101 Google Scholar
19. Wu, , J.-W., D.-X. Tian, and H.-B. Bao, "A designed model about amplification and compression of picoseconds pulse using cascaded SOA and NOLM device," Progress In Electromagnetics Research, Vol. 76, 127-139, 2007.
doi:10.2528/PIER07062003 Google Scholar
20. Ying, , C.-L., C.-H. Chang, Y.-L. Houng, H.-H. Lu, W.-S. Tsai, and H.-S. Su, "Down link CATV/FTTH and up-link FFTH transport systems based on re°ective semiconductor opticalamplifier," Progress In Electromagnetics Research C, Vol. 11, 109-120, 2009.
doi:10.2528/PIERC09101503 Google Scholar
21. Soto, , H., C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, "All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol. 14, No. 4, 498-500, 2002.
doi:10.1109/68.992590 Google Scholar
22. Kim, , J. H., B. C. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H.Woo, and S. H. Kim, "All-optical AND gate using cross-gain modulation in semiconductor optical amplifiers," Japanese Journal of Applied Physics , Vol. 43, No. 2, 608-610, 2004.
doi:10.1143/JJAP.43.608 Google Scholar
23. Zhang, X., Y. Wang, J. Sun, D. Liu, and D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Optics Express, Vol. 12, No. 3, 361-366, 2004.
doi:10.1364/OPEX.12.000361 Google Scholar
24. Sharaiha, , A., J. Topomondzo, and P. Morel, "All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier," Optics Communications, Vol. 265, No. 1, 322-325, 2006.
doi:10.1016/j.optcom.2006.03.036 Google Scholar
25. Berrettini, , G., A. Simi, A. Malacarne, A. Bogoni, and L. Poti, "Ultrafast integrable and reconfiurable XNOR, AND, NOR, and NOT photonic logic gate," IEEE Photonics Technology Letters, Vol. 18, No. 8, 917-919, 2006.
doi:10.1109/LPT.2006.873570 Google Scholar
26. Li, , Z., G. Li, and , "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol. 18, No. 12, 1341-1343, 2006.
doi:10.1109/LPT.2006.877008 Google Scholar
27. Guo, , L. Q. and M. J. Connelly, "All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier," Optics Express, Vol. 14, No. 7, 2938-2943, 2006.
doi:10.1364/OE.14.002938 Google Scholar
28. Patel, , N. S., K. L. Hall, and K. A. Rauschenbach, "Interferometric all-optical switches for ultrafast signal processing," Applied Optics, Vol. 37, No. 14, 2831-2841, 1998.
doi:10.1364/AO.37.002831 Google Scholar
29. Dong, , H., H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, "80 Gb/s all-optical logic AND operation using Mach-Zehnder interferometer with differential scheme ," Optics Communications, Vol. 265, No. 1, 79-83, 2006.
doi:10.1016/j.optcom.2006.02.045 Google Scholar
30. Feng, C., J. Wu, K. Xu, and J. Lin, "Simple ultrafast all-optical AND logic gate," Optical Engineering, Vol. 46, No. 12, 2007. Google Scholar
31. Martinez, J. M., F. Ramos, and J. Marti, "10 Gb/s reconfigurable optical logic gate using a single hybrid-integrated SOA-MZI," Fiber and Integrated Optics, Vol. 27, No. 1, 15-23, 2008.
doi:10.1080/01468030701715948 Google Scholar
32. Singh, , S. and Lovkesh, "Ultrahigh speed optical signal processing logic based on an SOA-MZI," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 2, 970-977, 2012.
doi:10.1109/JSTQE.2011.2155623 Google Scholar
33. Mork, J., M. L. Nielsen, and T. W. Berg, "The dynamics of semiconductor optical amplifiers: Modeling and applications," Optics and Photonics News, Vol. 14, No. 7, 42-48, 2003.
doi:10.1364/OPN.14.7.000042 Google Scholar
34. Mulvad, , H. C. H., M. Galili, L. K. Oxenlowe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, "Demonstration of 5.1 Tb/s data capacity on a single-wavelength channel," Optics Express, Vol. 18, No. 2, 1438-1443, 2010.
doi:10.1364/OE.18.001438 Google Scholar
35. Ji, , W., M. Zhang, and P. Ye, "Simulation of an all-optical XOR gate with a semiconductor optical amplifier Mach-Zehnder interferometer sped up by a continuous-wave assistant light," Journal of Optical Networking, Vol. 4, No. 8, 524-530, 2005.
doi:10.1364/JON.4.000524 Google Scholar
36. Randel, S., A. M. de Melo, K. Petermann, V. Marembert, and C. Schubert, "Novel scheme for ultrafast all-optical XOR operation," Journal of Lightwave Technology, Vol. 22, No. 12, 2808-2815, 2004.
doi:10.1109/JLT.2004.833282 Google Scholar
37. Sun, , H., Q. Wang, H. Dong, Z. Chen, N. K. Dutta. J. Jaques, and A. B. Piccirilli, "All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI," IEEE Journal of Quantum Electronics, Vol. 42, No. 8, 747-751, 2006.
doi:10.1109/JQE.2006.878184 Google Scholar
38. Gutierrez-Castrejion, R., "Turbo-switched Mach-Zehnder interfer-ometer performance as all-optical signal processing element at 160 Gb/s," Optics Communications,, Vol. 282, No. 22, 4345-4352, 2009.
doi:10.1016/j.optcom.2009.08.015 Google Scholar
39. Webb, R. P., R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electronics Letters, Vol. 39, No. 1, 79-81, 2003.
doi:10.1049/el:20030010 Google Scholar
40. Kang, I., M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. T. Gomez, Y. F. Chen, S. S. Patel, N. Dutta, A. Piccirilli, and J. Jaques, "All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical ampli¯er Mach-Zehnder interferometers," Optics Express, Vol. 17, No. 21, 19062-19066, 2009.
doi:10.1364/OE.17.019062 Google Scholar
41. Berg, , T. W. and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 40, No. 11, 1527-1539, 2004.
doi:10.1109/JQE.2004.835114 Google Scholar
42. Akiyama, , T., M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23dBm achieved with quantum dots," IEEE Photonics Technology Letters, Vol. 17, No. 8, 1614-1616, 2005.
doi:10.1109/LPT.2005.851884 Google Scholar
43. Yasuoka, , N., K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, "Quantum-dot semiconductor optical amplifiers with polarization-independen gains in 1.5-um wavelength bands," IEEE Photonics Technology Letters, Vol. 20, No. 23, 1908-1910, 2008.
doi:10.1109/LPT.2008.2004695 Google Scholar
44. Zilkie, A. J., J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, and , "Carrier dynamics of quantum-dot, quantum-dash and quantum-well semiconductor optical amplifier operating at 1.55 um," IEEE Journal of Quantum Electronics, Vol. 43, No. 11, 982-991, 2007.
doi:10.1109/JQE.2007.904474 Google Scholar
45. Sugawara, , M., T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, "Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gbs-1 and a new scheme of 3R regenerators," Measurement Science and Technology, Vol. 13, No. 11, 1683-1691, 2002.
doi:10.1088/0957-0233/13/11/304 Google Scholar
46. Uskov, , A. V., E. P. O'Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, "On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers," IEEE Photonics Technology Letters,, Vol. 16, No. 5, 1265-1267, 2004.
doi:10.1109/LPT.2004.826260 Google Scholar
47. Schreieck, , R. P., M. H. Kwakernaak, H. Jackel, and H. Melchior, "All-optical switching at multi-100-Gb/s data rates with Mach-Zehnder interferometer switches," IEEE Journal of Quantum Electronics, Vol. 38, No. 8, 1053-1061, 2002.
doi:10.1109/JQE.2002.800994 Google Scholar
48. Sun, , H., Q. Wang, H. Dong, and N. K. Dutta, "All-optical logic performance of quantum-dot semiconductor amplifier-based devices," Microwave and Optical Technology Letters,, Vol. 48, No. 1, 29-35, 2006.
doi:10.1002/mop.21252 Google Scholar
49. Han, , H., M. Zhang, P. Ye, and F. Zhang, "Parameter design and performance analysis of an ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer," Optics Communications,, Vol. 281, No. 20, 5140-5145, 2008.
doi:10.1016/j.optcom.2008.07.020 Google Scholar
55. Ben-Ezra, , Y., B. I. Lembrikov, and M. Haridim, "Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 45, No. 1, 34-41, 2009.
doi:10.1109/JQE.2008.2003497 Google Scholar
51. Rostami, , A., H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, "Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 46, No. 3, 354-360, 2010.
doi:10.1109/JQE.2009.2033253 Google Scholar
52. Dimitriadou, , E. and K. E. Zoiros, "On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Optics and Laser Technology, Vol. 44, No. 3, 600-607, 2012.
doi:10.1016/j.optlastec.2011.08.028 Google Scholar
53. Dimitriadou, E. and K. E. Zoiros, "Proposal for all-optical NOR gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Optics Communications , Vol. 285, No. 7, 1710-1716, 2012.
doi:10.1016/j.optcom.2011.11.122 Google Scholar
54. Dimitriadou, , E. and K. E. Zoiros, "On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical ampli¯er-based Mach-Zehnder interferometer," Optics and Laser Technology , Vol. 44, No. 6, 1971-1981, 2012.
doi:10.1016/j.optlastec.2012.02.022 Google Scholar
55. Dimitriadou, , E., K. E. Zoiros, and , "On the design of reconfigurable ultrafast all-optical NOR and NAND gates using a single quantum-dot semiconductor optical amplifier-based Mach Zehnder interferometer," Journal of Optics, Vol. 14, No. 10, 2012.
doi:10.1088/2040-8978/14/10/105401 Google Scholar
56. Dimitriadou, E. and K. E. Zoiros, "Proposal for ultrafast all-optical XNOR gate using single quantum-dot semiconductor optical ampli¯er-based Mach-Zehnder interferometer," Optics and Laser Technology, Vol. 45, No. 1, 79-88, 2013.
doi:10.1016/j.optlastec.2012.07.024 Google Scholar
57. Yang, , W., M. Zhang, and P. Ye, "Analysis of all-optical demultiplexing from 160/320 Gbit/s to 40 Gbit/s using quantum-dot semiconductor optical amplifiers assisted Mach-Zehnder interferometer," Microwave and Optical Technology Letters, Vol. 52, 1629-1633, 2010.
doi:10.1002/mop.25287 Google Scholar
58. Papadopoulos, , G. and K. E. Zoiros, "On the design of semiconductor optical amplifier-assisted Sagnac interferometer with full data dual output switching capability," Optics and Laser Technology, Vol. 43, No. 3, 697-710, 2011.
doi:10.1016/j.optlastec.2010.09.012 Google Scholar
59. Qasaimeh, , O., "An analytical model for quantum dot semiconduc-tor optical amplifiers," Optics Communications,, Vol. 222, No. 1--6, 277-287, 2003.
doi:10.1016/S0030-4018(03)01557-8 Google Scholar
60. Barnham, , K. and D. D. Vvdensky, Low-dimensional Semicon-ductor Structures: Fundamentals and Device Applications,, Cambridge University Press, 2001.
doi:10.1017/CBO9780511624247
61. Scheel, , H. J. and P. Capper, "Crystal Growth Technology: From Fundamentals and Simulation to Large-scale Production," Wiley- VCH, , 2008. Google Scholar
62. Ben-Ezra, , Y., B. I. Lembrikov, and M. Haridim, "Acceleration of gain recovery and dynamics of electrons in QD-SOA," IEEE Journal of Quantum Electronics, Vol. 41, No. 10, 1268-1273, 2005.
doi:10.1109/JQE.2005.854131 Google Scholar
63. Ben-Ezra, , Y., B. I. Lembrikov, and M. Haridim, "Specific features of XGM in QD-SOA," IEEE Journal of Quantum Electronics, Vol. 43, No. 8, 730-737, 2007.
doi:10.1109/JQE.2007.901587 Google Scholar
64. Ben-Ezra, , Y., M. Haridim, B. I. Lembrikov, and M. Ran, "Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier," IEEE Photonics Technology Letters,, Vol. 20, No. 7, 484-486, 2008.
doi:10.1109/LPT.2008.918256 Google Scholar
65. Majer, , N., K. Ludge, and E. Scholl, "Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers," Physical Review B, Vol. 82, 2010. Google Scholar
66. Hamie, , A., M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang, "Theoretical investigations of quantum-dot semiconductor optical ampli¯er enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems," Optics Express,, Vol. 19, No. 25, 25696-25711, 2011.
doi:10.1364/OE.19.025696 Google Scholar
67. Li, , X., G. Li, and , "Comments on `theoretical analysis of gain recovery time and chirp in QD-SOA'," IEEE Photonics Technology Letters, Vol. 18, No. 22, 2434-2435, 2006.
doi:10.1109/LPT.2006.886135 Google Scholar
68. Sygletos, , S., M. Spyropoulou, P. Vorreau, R. Bonk, I. Tomkos, W. Freude, and J. Leuthold, "Multi-wavelength regenerative ampli¯cation based on quantum-dot semiconductor optical amplifiers," Proceedings of International Conference on Transparent Optical Networks,, 234-237, 2007. Google Scholar
69. Bogoni, , A., L. Poti, P. Ghelfi, M. Scaffardi, C. Porzi, F. Ponzini, G. Meloni, G. Berrettini, A. Malacarne, and G. Prati, "OTDM-based optical communications networks at 160 Gbit/s and beyond," Optical Fiber Technology, Vol. 13, No. 1, 1-12, 2007.
doi:10.1016/j.yofte.2006.08.001 Google Scholar
70. Uskov, , A. V., J. Mork, B. Tromborg, T. W. Berg, I. Magnusdottir, and E. P. O'Reilly, "On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers," Optics Communications, Vol. 227, No. 4--6, 363-369, 2003.
doi:10.1016/j.optcom.2003.09.052 Google Scholar
71. Zilkie, , A. J., J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, and K. J. Malloy, "Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 um," Journal of Lightwave Technology, Vol. 26, No. 11, 1498-1509, 2008.
doi:10.1109/JLT.2008.923215 Google Scholar
72. Yang, , W., M. Zhang, and P. Ye, "Analysis of 160 Gb/s all-optical NRZ-to-RZ data format conversion using quantum-dot semiconductor optical amplifiers assisted Mach-Zehnder interferometer," Optics Communications, Vol. 282, No. 9, 1744-1750, 2009.
doi:10.1016/j.optcom.2009.01.055 Google Scholar
73. Agrawal, G. P., "Fiber-optic Communication Systems," Wiley, 2002. Google Scholar
74. Zoiros, , K. E., P. Avramidis, and C. S. Koukourlis, "Performance investigation of semiconductor optical amplifier-based ultrafast nonlinear interferometer in nontrivial switching mode," Optical Engineering,, Vol. 47, No. 11, 2008.
doi:10.1117/1.3028348 Google Scholar
75. Gutierrez-Castrejon, , R., L. Occhi, L. Schares, and G. Guekos, "Recovery dynamics of cross-modulated beam phase in semicon-ductor ampli¯ers and applications to all-optical signal processing," Optics Communications,, Vol. 195, No. 1--4, 167-1771, 2001.
doi:10.1016/S0030-4018(01)01315-3 Google Scholar